Background

- The kidneys remove waste, produce hormones, and control blood pressure (BP)
- CKD is a disease spectrum, with stage one being least severe and stage five being the most severe often requiring dialysis
- In CKD, the kidneys gradually stop working and manifest in various systemic issues such as heart disease, nerve damage, weak bones, fluid buildup, and hypertension
- 10% of Americans are affected by CKD and hypertension often accompanies
- Hypertension, a common risk factor for both cardiovascular disease and CKD, is often poorly controlled in patients with advanced CKD (stage 4)
- Additionally, hypertension accelerates the progression of CKD
- Therefore, it should be treated, and diuretics are helpful in doing this

Diuretics

- Most diuretics decrease blood pressure by reducing the kidney's uptake of sodium
- There are various diuretic classes such as loop diuretics, potassium sparing diuretics, and thiazide diuretics
- The focus for this poster is placed on thiazide and thiazide-like diuretics
- Chlorthalidone, a thiazide-like diuretic, reduces blood pressure, reduces cardiovascular morbidity, such as the incidence of stroke and heart failure, and cardiovascular morbidity
- Since it's discovery in 1957, chlorthalidone has been a mainstay therapy for reducing blood pressure
- Loop diuretics are effective in treating hypervolemia and hypertension in CKD but often cause acute kidney injury (AKI)
- Conversely, thiazide diuretics are less potent and longer acting
- Until recently, there was no firm data that supported the use of thiazides for improving blood pressure in advanced CKD
- Previous guidelines instructed physicians to switch from thiazide diuretics to loop diuretics when estimated glomerular filtration rate (eGFR) fell below 30 $mL/min/1.73^{2}$
- However, recent evidence suggests that thiazides may have a greater role in controlling blood pressure in patients with an eGFR below 30

Varia

At 1

Are Diuretics Useful at Reducing **Blood Pressure in Chronic** Kidney Disease (CKD)?

Yes!

Variable	Chlorthalidone (N=81)	Placebo (N = 79)
Systolic blood pressure	ΥΥΥΥ ΥΥΥ	. ,
24-hr blood pressure — mm Hg		
At randomization	142.6±8.1	140.1±8.1
Adjusted change at 12 wk (95% CI)	–11.0 (–13.9 to –8.1)	–0.5 (–3.5 to 2.5)
Daytime blood pressure — mm Hg		
At randomization	145.2±8.8	142.7±8.8
Adjusted change at 12 wk (95% CI)	-11.3 (-14.4 to -8.3)	-0.7 (-3.9 to 2.5)
Nighttime blood pressure — mm Hg		
At randomization	138.0±10.0	135.4±10.2
Adjusted change at 12 wk (95% CI)	–10.5 (–15.2 to –5.8)	0.6 (-3.0 to 4.2)
Diastolic blood pressure		
24-hour blood pressure — mm Hg		
At randomization	74.6±10.1	72.8±9.3
Adjusted change at 12 wk (95% CI)	-4.9 (-6.6 to -3.2)	-1.0 (-2.8 to 0.7)
Daytime blood pressure — mm Hg		
At randomization	77±10.6	75.1±9.5
Adjusted change at 12 wk (95% CI)	–5.4 (–7.3 to –3.6)	-1.3 (-3.1 to 0.6)
Nighttime blood pressure — mm Hg		
At randomization	70.4±10.5	68.9±10.2
Adjusted change at 12 wk (95% CI)	–4.7 (–7.5 to –2.0)	-0.6 (-2.8 to 1.6)
Patients with a nocturnal dip in systolic blood pressure§		
At randomization — no./total no. (%)	14/79 (18)	18/79 (23)
At 12 wk — no./total no. (%)	14/65 (22)	13/72 (18)

Andrew Cramer, MS, OMS-I Marian University College of Osteopathic Medicine

Treatment Effect
(95% Cl);

$$-10.5 (-14.6 to -6.4)$$
;

 $-10.6 (-15.0 to -6.3)$
 $-11.1 (-16.6 to -5.6)$
 $-3.9 (-6.3 to -1.5)$
 $-4.2 (-6.8 to -1.6)$
 $-4.1 (-7.4 to -0.9)$

1.0 (0.98 to 1.01)

CLICK Trial

- Chlorthalidone in Chronic Kidney Disease (CLICK) Trial
- Double Blind, randomized, placebo-controlled of chlorthalidone in patients with trial CKD advanced and hypertension
- Hypothesized that chlorthalidone would both decrease systolic blood pressure and albuminuria over 12 weeks
- Eligible patients: stage 4 CKD and blood pressure of >130/80 mmHg
- Nine visits in total with yearly follow-ups for three years post trial completion

Results

- 160 patients underwent randomization
- At baseline, the mean eGFR was 23.2 ± 4.2 $ml/min/1.73m^2$
- The mean number of antihypertensive medications prescribe was 3.4 ± 1.4
- Use of gold standard blood pressure monitoring – ambulatory blood pressure
- At randomization, mean systolic BP was 142.6±8.1 mmHg in the chlorthalidone group and 140.1 ± 8.1 mmHg in the placebo group and the mean diastolic BP was 74.6 ± 10.1 mmHg and 72.8 ± 9.3 mmHg, respectively
- The adjusted change in SBP from baseline to 12 weeks was -11.0 mmHg in the chlorthalidone group and -0.5 mmHg in the placebo group
- The percent change in urinary albumin-tocreatinine ratio from baseline to 12 weeks was lower in the chlorthalidone group than in the placebo group by 50 percentage points

Takeaways

- Among patients with advanced CKD and poorly controlled hypertension, chlorthalidone therapy improved blood pressure at 12 weeks as compared with placebo
- This study proved that chlorthalidone, a drug that has been around for 65 years, is beneficial for reducing blood pressure in those with advanced CKD when it previously was contraindicated
- This brings up the importance of taking a second look at older medications for new indications
- New does not always mean better

