
An Open Guide to Data Structures and Algorithms

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

An Open Guide to Data
Structures and Algorithms

PAUL W. BIBLE AND LUCAS MOSER

PALNI PRESS

INDIANAPOLIS, INDIANA

An Open Guide to Data Structures and Algorithms by Paul W. Bible and Lucas Moser is
licensed under a Creative Commons Attribution 4.0 International License, except
where otherwise noted.

https://creativecommons.org/licenses/by/4.0/

Contents

Publisher's Note vii

Acknowledgements viii

1. Algorithms, Big-O, and Complexity 1

2. Recursion 20

3. Sorting 60

4. Search 119

5. Linked Lists 138

6. Stacks and Queues 158

7. Hashing and Hash Tables 171

8. Search Trees 218

9. Priority Queues 236

10. Dynamic Programming 270

11. Graphs 297

12. Hard Problems 315

Contributors 341

Publisher's Note

This textbook was peer-reviewed, copyedited, and published
through the Private Academic Library Network of Indiana (PALNI)
PALSave Textbook Creation Grants Program, which is funded by
the Lilly Endowment Inc. For more information about the PALSave:
PALNI Affordable Learning Program, visit the PALSave website.

Use the left-hand contents menu to navigate, or the green
bar at the bottom of the page to page forward and back.

If you have comments, suggestions, or corrections for this
textbook, please send them to palsave@palni.edu.

Publisher's Note | vii

https://lillyendowment.org/
https://palsave.palni.org/
mailto:palsave@palni.edu
https://lillyendowment.org/
https://lillyendowment.org/
https://lillyendowment.org/

Acknowledgements

We would like to thank Edward Mandity for serving as the project
manager for the textbook creation process. We would also like to
thank Amanda Hurford with the PALNI team for working with us
when we encountered challenges along the way. We owe a great
debt to our reviewers, Dr. Joshua Kiers and Dr. Aaron Boudreaux, for
their helpful suggestions and key insights that drastically improved
our initial draft. We would like to also thank Matthew Furber for
offering graphic design advice as well as introducing us to our
fabulous illustrator, Mia M. Scarlato. Additionally, we would like
to thank our department chair, Dr. Matt DeLong, for his constant
support of our efforts to drive learning and equity through the
creation of this open-access textbook. We also wish to thank all
members of Marian University’s Department of Mathematical and
Computational Sciences in the School of Science and Mathematics
for the awesome discussions of research, pedagogy, and inclusive
instruction, not to mention the fellowship and friendship.

Paul W. Bible would like to thank his wonderful wife, Dr.
Colleen Doçi. Her constant love and support made this happen.

Lucas Moser would like to thank his wife and kids for
supporting him in his endeavors as an educator.

viii | Acknowledgements

1. Algorithms, Big-O, and
Complexity

Learning Objectives

After reading this chapter you will…

• be able to define algorithms and data structures.
• be able to describe how this study will differ from

prior academic studies.
• be able to describe how the size of the input to a

procedure impacts resource utilization.
• use asymptotic notation to describe the scalability

of an algorithm.

Introduction

As a student of computer science, you have already accomplished
a broad array of programming tasks. In order to fully understand
where we are going, let us first consider where we have been. We
will start by analyzing a programming exercise from an introductory
class or textbook. Consider a function that counts the occurrences
of a particular character x within a string s.

Algorithms, Big-O, and Complexity | 1

With regard to learning a programming language, this
exercise serves many purposes. In order to solve this problem, you
must first understand various features of a language’s syntax:

• Variables are units of data that allow us to store intermediate
results.

• Iteration is a means of systematically visiting each element in a
sequence.

• Conditionals allow us to choose whether to execute a
particular set of statements.

• Functions allow us to encapsulate logic and reuse it elsewhere.

Individually, each of these concepts is neither interesting
nor impactful. The real power in computation comes from
combining these into meaningful solutions, and in that combination
lies the purpose of this text. Moving forward, we will refer to this
combination of elements as synthesis.

Synthesis is something we learn to do through the study
of data structures and algorithms. These are known and well-
researched solutions. This text will require us to learn the patterns
and trade-offs inherent in those existing solutions. However, there
is a blunt truth underlying this course of study: you will likely never
implement these algorithms or data structures again. This leads to
the obvious question of “Why study them in the first place?” The
answer lies in the imminent transition from skills to synthesis.

Synthesis is hard, regardless of your field of study.
Arithmetic, algebra, and geometry are relatively easy compared to
engineering. Performing at a piano recital is not the same as
composing the music. Basic spelling and grammar are not sufficient

2 | Algorithms, Big-O, and Complexity

for writing a novel. Writing a conditional or loop is inherently
different than creating software. There is one major difference:
arithmetic, piano, and grammar all have utility outside of synthesis.
There is no utility in this world for conditional statements and loops
if you cannot apply them to solve new problems.

For many students, this transition from programming skills
to synthesis of solutions will require significant effort. It is likely
that you have experienced nothing like it before. For that reason,
we choose to “stand on the shoulders of giants” to see how others
have transformed simple components into elegant solutions. This
will likely require us to memorize much of what we see. You may
even, from time to time, be asked to recall specific details of a data
structure or algorithm. However, if your study of these solutions
ends there, you have certainly missed the mark.

Consider another analogy. Bootstrapping is a computing
technique employed when a computer loads a program. Rather than
loading all instructions needed to execute a task, the computer
loads only a small number of critical instructions, and those in turn
load other instructions. In a sense, the program starts out with only
a seed containing the most crucial, fundamental, and useful pieces
of information. That seed does not directly solve any problem but
rather solves a problem by acquiring other instructions that can.
The study of data structures and algorithms will bootstrap your
problem-solving skills. You may or may not explicitly use anything
you learned, but the ideas you have been exposed to will give you a
starting point for solving new and interesting problems later.

What Is a Data Structure?

Data encountered in a computer program is classified by type.
Common types include integers, floating point numbers, Boolean
values, and characters. Data structures are a means of aggregating
many of these scalar values into a larger collection of values.

Algorithms, Big-O, and Complexity | 3

Consider a couple of data structures that you may have encountered
before. The index at the end of a book is not simply text. If you
recognize it as structured data, it can help you find topics within
a book. Specifically, it is a list of entries sorted alphabetically. Each
entry consists of a relevant term followed by a comma-separated list
of page numbers. Likewise, a deck of playing cards can be viewed
as another data structure. It consists of precisely 13 values for 4
different suits, resulting in 52 cards. Each value has a specific
meaning. If you wish to gain access to a single card, you may cut the
deck and take whatever card is on top.

With each data structure encountered, we consider a set
of behaviors or actions we want to perform on that structure. For
example, we can flip over the card on the top of a deck. If we
combine this with the ability to sequentially flip cards, we can define
the ability to find a specific card given a deck of unsorted playing
cards. Describing and analyzing processes like these is the study of
algorithms, which are introduced in the next section and are the
primary focus of this text.

What Is an Algorithm?

An algorithm is an explicit sequence of instructions, performed on
data, to accomplish a desired objective. Returning to the playing
card example, your professor may ask you to hand him the ace
of spades from an unsorted deck. Let us consider two different
procedures for how to accomplish this task.

4 | Algorithms, Big-O, and Complexity

A B

1.Spread the cards out on a table.
2.Hand him the ace of spades.

1.Orient the deck so that it is facing up.
2.Inspect the value of the top card.
3.Is the card the ace of spades?
a.If yes, then hand him the card.
b.If no, then discard the card and r

The above is a meaningful illustration and represents our
first encounter with the challenge of synthesis introduced in the
first section of this chapter. When someone new to computer
science is asked to find a card from a deck, the procedure more
often resembles A rather than B. Whether working with cards in a
deck or notes from class, our human brains can have the ability to
process a reasonably sized set of unstructured data. When looking
for a card in a deck or a topic in pages of handwritten notes,
informal procedures like A work fine. However, they do have
limitations. Procedure A lacks the precision necessary to guide a
computer in solving the problem.

Algorithms and Implementations

From a design perspective, it makes sense to formulate these
instructions as reusable procedures or functions. The process of
reimagining an algorithm as a function or procedure is typically
referred to as implementation. Once implemented, a single well-
named function call to invoke a specific algorithm provides a

Algorithms, Big-O, and Complexity | 5

powerful means of abstraction. Once the algorithm is written
correctly, future users of the function may use the implementation
to solve problems without understanding the details of the
procedure. In other words, using a single high-level procedure or
function to run an algorithm is a good design practice.

Expression in a Programming Language

If you are reading this book, you have at least some experience with
programming. What if you are asked to express these procedures
using a computer program? Converting procedure A is daunting
from the start. What does it mean to spread the deck out on the
table? With all “cards” strewn across a “table,” we have no
programmatic way of looking at each card. How do you know when
you have found the ace of spades? In most programming languages
there is no comparison that allows you to determine if a list of items
is equal to a single value. However, procedure B can (with relative
ease) be expressed in any programming language. With a couple of
common programming constructs (lists, iteration, and conditionals),
someone with even modest experience can typically express this
procedure in a programming language.

The issue is further complicated if we attempt to be too
explicit, providing details that obscure the desired intent. What if
instead of saying “Then hand him the card,” you say, “Using your
index finger on the top of the card and your thumb on the bottom,
apply pressure to the card long enough to lift the card 15
centimeters from the table and 40 centimeters to the right to hand
it to your professor.” In this case, your instructions have become
more explicit, but at the cost of obfuscating your true objective.
Striking a balance between explicit and sufficient requires practice.
As a rule, pay attention to how others specify algorithms and
generally lean toward being more explicit than less.

6 | Algorithms, Big-O, and Complexity

Analysis of Algorithms

Constraints

How much work does it require to find the ace of spades in a
single deck of cards? How many hands do you need? An algorithm
(such as procedure B) will always be executed in the presence of
constraints. If you are searching for the ace of spades, you would
probably like your search to terminate in a reasonable amount of
time. Thirty seconds to find the card is probably permissible, but
four hours likely is not. In addition, finding the card in the deck
requires manipulation of the physical cards with your hands. If you
had to perform this task with one hand in your pocket, you likely
would have to consider a different algorithm.

Constraints apply in the world of software as well. Even
though modern CPUs can perform operations at an incredible rate,
there is still a very real limit to the operations that can be performed
in a fixed time span. Computers also have a fixed amount of memory
and are therefore space constrained.

Scalability

A primary focus in the study of algorithms is what happens when we
no longer have a single deck of 52 cards. What if we have a thousand
decks and really bad luck (all 1,000 aces of spades are at the back
of the deck)? No human hands can simultaneously hold that many
cards, and even if they could, no human is going to look at 51,000
other cards to check for an ace of spades. This illustrates the desire
for algorithms to be scalable. If we start with a problem of a certain
size (say, a deck of 52 cards), we particularly care about how much
harder it is to perform the procedure with two decks. With a large

Algorithms, Big-O, and Complexity | 7

enough input, any algorithm will eventually become impractical. In
other words, we will eventually reach either a space constraint or a
time constraint. It is therefore necessary that realistic problem sizes
be smaller than those thresholds.

Measuring Scalability

Measuring scalability can be challenging. It seems obvious (but
worth noting) that a given algorithm for sorting integers may be
able to sort 10 trillion values on a distributed supercomputer but
will likely not terminate on a mobile phone in a reasonable amount
of time. This means the simple model for measuring scalability
(namely, how long an algorithm takes to run) is insufficient.
Comparing algorithms without actually running them on a physical
machine would be useful. This is the main topic of this section.

If we wish to analyze algorithm performance without
actually executing it on a computer, we must define some sort of
abstraction of a modern computer. There are a number of models
we could choose to work with, but the most relevant for this text is
the uniform cost model. With this model, we choose to assume that
any operation performed takes a uniform amount of time. In many
real-world scenarios, this may likely be inaccurate. For example,
in every coding framework and every machine architecture,
multiplication is always faster than division. So why is it acceptable
to assume a uniform cost? When learning algorithms and data
structures for the first time, assuming uniform cost usually gives
us a sufficiently granular impression of runtime while also retaining
ease of understanding. This allows us to focus on the synthesis and
implementation of algorithms and deal with more precise models
later.

One last aspect of modeling is that we need not measure
all operations in all cases. It is quite common, for example, to only
consider comparison operations in sorting algorithms. This is

8 | Algorithms, Big-O, and Complexity

justifiable in many cases. Consider comparing one algorithm or one
implementation to another. We may be able to employ some clever
tricks to marginally improve performance. However, for most
general-purpose sorting algorithms, the number of comparisons is
the most meaningful operation to count. In some cases, it may make
sense to count the number of times an object was referenced or how
many times we performed addition. Keep in mind, the important
part of algorithm analysis is how many more operations we have to
do each time we increase the size of our input. Fortunately, we have
a notation that helps us describe this growth. In the next section,
we will formally define asymptotic notation and observe how it is
helpful in describing the performance of algorithms.

Algorithm Analysis

When comparing algorithms, it is typically not sufficient to describe
how one algorithm performs for a given set of inputs. We typically
want to quantify how much better one algorithm performs when
compared to another for a given set of inputs.

To describe the cost of a software function (in terms of
either time or space), we must first represent that cost using a
mathematical function. Let us reconsider finding the ace of spades.
How many cards will we have to inspect? If it is the top card in the
deck, we only have to inspect 1. If it is the bottom card, we will have
to inspect 52. Immediately, we start to see that we must be more
precise when defining this function. When analyzing algorithms,
there are three primary cases of concern:

• Worst case: This function describes the most comparisons we
may have to make given the current algorithm. In our ace of
spades example, this is represented by the scenario when the
ace of spades was the bottom card in the deck. If we wish to
represent this as a function, we may define it as f(n) = n. In

Algorithms, Big-O, and Complexity | 9

other words, if you have 52 cards, the most comparisons you
will have to perform will be 52. If you add two jokers and now
have 54 cards, you now have to perform at most 54
comparisons.

• Average case: This function describes what we would typically
have to do when performing an algorithm many times. For
example, imagine your professor asked you to first find the ace
of spades, then 2 of spades, then 3 of spades, until you have
performed the search for every card in the deck. If you left the
card in the deck each round, some cards would be near the top
of the deck and others would be near the end. Eventually, each
iteration would have a cost function of roughly f(n) = n/2.

• Amortized case: This is a challenging case to explain early in
this book. Essentially, it arises whenever you have an expensive
set of operations that only occur sometimes. We will
encounter this in the resizing of hash tables as well as the
prerequisites for Binary Search.

You may wonder why best-case scenarios are not
considered. In most algorithms, the best case is typically a small,
fixed cost and is therefore not very useful when comparing
algorithms.

Consider a very literal interpretation of a uniform cost
model for our ace of spades example. We would then have three
different operations:

• compare (C): comparing a card against the desired value
• discard (D): discarding a card that does not match
• return (R): handing your professor the card that does match

Under this model, our cost function will be the following
under the worst-case scenario, where n is the number of cards in
the deck:

10 | Algorithms, Big-O, and Complexity

f(n) = nC + nD + R.

Because we consider all costs to be uniform, we can set C, D, and R
all to some constant. To make our calculations easier, we will choose
1. Our cost function is now slightly easier to read:

f(n) = 1n + 1n + 1

f(n) = 2n + 1.

This implies that, regardless of how many cards we have in our deck,
we have a small cost of 1 (namely, the amount of time to return the
matching card). However, if we add two jokers, we have increased
our deck size by 2, thus increasing our cost by 4. Notice that the
first element in our function is variable (2n changes as n changes),
but the second is fixed. As our n gets larger, the coefficient of 2 on
2n has a much greater impact on the overall cost than the cost to
return the matching card.

Big-O Notation

Imagine now that another student in your class developed a
separate algorithm, which has a cost function of m(n) = n2 + 1. The
question is now, Which algorithm performs better than the other
as we add more cards to the deck? Consider the graph of f and m
below, where a shallower slope represents a slower growth rate.

Algorithms, Big-O, and Complexity | 11

Figure 1.1

Note that when n = 1, your classmate’s algorithm performs
fewer operations than our original. However, for all n values that
come after 2, the cost of our original algorithm wins outright.
Although this does give us some intuition about the performance
of algorithms, it would behoove us to define more precise notation
before moving forward.

Asymptotic notation gives us a way of describing how the
output of a function grows as the inputs become bigger. We will
address three different notations as part of this chapter, but the
most important is Big-O. Most often stylized with a capital O, this
notation enables us to classify cost functions into various well-
known sets. Formally, we define Big-O as follows:

f(n) = O(g(n)) if f(n) ≤ cg(n) for some c > 0 and all n > n0.

While this is a very precise and useful definition, it does
warrant some additional explanation:

12 | Algorithms, Big-O, and Complexity

• O(g(n)) is a set of all functions that satisfy the condition that
they are “less than” some constant multiplied by g(n). While it
is conventional to say that f(n) = O(g(n)), it is more accurate to
read this as “f(n) is a member of O(g(n)).”

• When determining whether a function is a member of O(g(n)),
any positive real number may be chosen for c.

• The most important aspect of this notation is that the
inequality holds when n is really big. As a result, asserting that
it holds for relatively small n values is not necessary. We can
choose an n0. Then for all values greater than it, our inequality
must hold.

Through some basic algebra, we can determine that f(n) is
O(n), and m(n) is O(n2):

f(n)=2n + 1 and g(n) = n, then we can show f(n) = O(n) as
follows:

2n + 1≤ cn

2n + 1≤ 3n

1≤ n

n≥ 1the original definition holds when n0 = 1.

m(n)=n2+1 and g(n) = n2, then we can show m(n) = O(n2)

n2 + 1≤ cn2

n2 + 1≤ 2n2

Algorithms, Big-O, and Complexity | 13

1≤ n2

n2≥ 1

n≥ 1the original definition holds when n0 = 1.

Notably, it is possible to show that f(n) = O(n2). However, it
is not true that m(n) = O(n). Showing this has been left as an exercise
at the end of the chapter.

Another Example

Someone new to algorithm analysis may start to draw conclusions
that cost functions with higher degree polynomials are
unequivocally slower (or worse) than those with lower degree
polynomials. Consider the following two cost functions and what
they look like when n is less than 10:

 s(n) = 64n

t(n) = n2.

14 | Algorithms, Big-O, and Complexity

Figure 1.2

As the size of your input (n in this case) gets larger, higher
degree terms will always have more influence over the growth of
the function than large coefficients on smaller degree terms. It is
important though that we do not immediately conclude that the
algorithm for function s is inherently better than or more useful
than the algorithm for function t. Notice that for small values of
n (specifically, those smaller than 64), algorithm t actually
outperforms s. There are real-world scenarios where input size is
known to be small, and an asymptotically less-than-ideal algorithm
may actually be preferred due to other desirable attributes.

Big-O notation captures the asymptotic scaling behavior
of an algorithm. This means the resource costs grow as n goes to
infinity. It is seen as a measure of the “complexity” of an algorithm.

Algorithms, Big-O, and Complexity | 15

In this text, we may refer to the “time complexity” of an algorithm,
which means its Big-O worst-case scaling behavior. If one algorithm
runs in O(n) time and the other in O(n2) time, we may say that
the O(n) algorithm is an order of magnitude faster than the O(n2)
algorithm. The same terms may also be applied to assessments of
the space usage of an algorithm.

Other Notations

The remainder of this book (and most books for that matter)
typically uses Big-O notation. However, other sources often
reference Big-Theta notation and a few also use Big-Omega. While
we will not use either of these extensively, you should be familiar
with them. Additional notations outside these three do exist but are
encountered so infrequently that they need not be addressed here.

Big-Omega Notation

Whereas Big-O notation describes the upper bound on the growth
of a function, Big-Omega notation describes the lower bound on
growth. If you describe Big-O notation as “some function f will never
grow faster than some other function g,” then you could describe
Big-Omega as “some function f will never grow more slowly than g.”
Herein lies the explanation of why Big-Omega does not see much
usage in real-world scenarios. In computer science, upper bounds
are typically more useful than lower bounds when considering how
an algorithm will perform on a large scale. In other words, if an
algorithm performs better than expected, we are pleasantly
surprised. If it performs worse, it may take a long time, if ever, to
complete. The formal definition of Big-Omega is as follows:

16 | Algorithms, Big-O, and Complexity

f(n) = Ω(g(n)) if c * g(n) ≤ f(n) for some c > 0 and all n >
n0.

Big-Theta Notation

Big-Theta of a function, stylized as θ(g(n)), has more utility in
routine analysis than Big-Omega. Recall that f(n) = 2n+1 is both O(n)
and O(n2). This is true because the growth of the function has an
upper bound of n as well as n2. Although it is possible to reference
different functions, it is common to choose the slowest-growing
g(n) such that g(n) is an upper bound on function f. We can see that
Big-O may not be as precise as we would like, and this can result in
some confusion. Therefore, in this book, we will be interested in the
smallest g(n) that can serve to bound the algorithm at O(g(n)). As a
result of the ambiguity of Big-O, some computer scientists prefer to
use Big-Theta. In this notation, we choose to specify both the upper
and lower bounds on growth by using a single function g(n). This
removes confusion and allows for a more precise description of the
growth of a function. The definition of Big-Theta is as follows:

f(n) = θ(g(n)) if c1 * g(n) ≤ f(n) ≤ c2 * g(n) for some c1 > 0,
c2 > 0 and n > n0.

It should be noted that not all algorithms can be described

Algorithms, Big-O, and Complexity | 17

using Big-Theta notation, as it requires that an algorithm be
bounded from above and below by the same function.

Exercises

1. Consider a new task for a deck of cards. Someone
has cut the deck (split it into two parts), flipped one part
upside down, then shuffled the deck back together. As a
result, we currently have one deck that has some cards
facing up, others facing down, and no discernable pattern
to predict which is up or down. Write a description
(algorithm) for how to put all cards face up in the deck. Be
precise enough for your procedure to be reproducible but
not so verbose that the reader loses track of the core
components of the algorithm.

2
. Write a cost function (using a uniform cost model)

that describes the work necessary to reorient a deck of n
cards. If your deck is suddenly m cards larger, how much
additional work must be completed?

3
. For each function below, specify whether it is O(n),

O(n2), or both.

a. f(n) = 8n + 4n
b. f(n) = n(n+1)/2
c. f(n) = 12
d. f(n) = 1000n2

18 | Algorithms, Big-O, and Complexity

References

Cormen, Thomas H., Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms, 2nd
ed. Cambridge, MA: The MIT Press, 2001.

Algorithms, Big-O, and Complexity | 19

2. Recursion

Learning Objectives

After reading this chapter you will…

• understand the features of recursion and recursive
processes.

• be able to identify the components of a recursive
algorithm.

• be able to implement some well-known recursive
algorithms.

• be able to estimate the complexity of recursive
processes.

• understand the benefits of recursion as a problem-
solving strategy.

Introduction

Recursion is a powerful tool for computation that often saves the
programmer considerable work. As you will see, the benefit of
recursion lies in its ability to simplify the code of algorithms, but
first we want to better understand recursion. Let’s look at a simple
nonrecursive function to calculate the product of 2 times a
nonnegative integer, n, by repeated addition:

20 | Recursion

This function takes a number, n, as an input parameter
and then defines a procedure to repeatedly add 2 to a sum. This
approach to calculation uses a for-loop explicitly. Such an approach
is sometimes referred to as an iterative process. This means that
the calculation repeatedly modifies a fixed number of variables that
change the current “state” of the calculation. Each pass of the loop
updates these state variables, and they evolve toward the correct
value. Imagine how this process will evolve as a computer executes
the function call multiplyBy2(3). A “call” asks the computer to
evaluate the function by executing its code.

When the process starts, sum is 0. Then the process
iteratively adds 2 to the sum. The process generated is equivalent to
the mathematical expression (2 + 2 + 2). The following table shows
the value of each variable (i, sum, and n) at each time step:

Figure 2.1

Recursion | 21

Recursive Multiplication

Like iterative procedures, recursive procedures are a means to
repeat certain operations in code. We will now write a recursive
function to calculate the multiplication by 2 as a sequence of
addition operations.

The recursive formulation follows the mathematical
intuition that 2 * n = 2 + 2 * (n − 1) = 2 + 2 + 2 * (n − 2) … and
so on until you reach 2 + 2 + 2 + … 2 * 1. We can visualize this
process by considering how a computer might evaluate the function
call recursiveMultiplyBy2(3). The evaluation process is similar
conceptually to a rewriting process.

recursiveMultiplyBy2(3) -> 2 +
recursiveMultiplyBy2(2)

-> 2 + 2 + recursiveMultiplyBy2(1)
-> 2 + 2 + 2 + recursiveMultiplyBy2(0)
-> 2 + 2 + 2 + 0
-> 2 + 2 + 2
-> 6

This example demonstrates a few features of a recursive
procedure. Perhaps the most recognizable feature is that it makes
a call to itself. We can see that recursiveMultiplyBy2 makes a call
to recursiveMultiplyBy2 in the else part of the procedure. As an
informal definition, a recursive procedure is one that calls to itself
(either directly or indirectly). Another feature of this recursive
procedure is that the action of the process is broken into two parts.
The first part directs the procedure to return 0 when the input, n, is
equal to 0. The second part addresses the other case where n is not

22 | Recursion

0. We now have some understanding of the features of all recursive
procedures.
Features of Recursive Procedures

• A recursive procedure makes reference to itself as a
procedure. This self-call is known as the recursive call.

• Recursive procedures divide work into two cases based on the
value of their inputs.

◦ One case is known as the base case.
◦ The other case is known as the recursive case or

sometimes the general case.

Recursive Exponentiation

Let us now consider another example. Just as multiplication can be
modeled as repeated addition, exponentiation can be modeled as
repeated multiplication. Suppose we wanted to modify our iterative
procedure for multiplying by 2 to create an iterative procedure for
calculating powers of 2 for any nonnegative integer n. How might
we modify our procedure? We might simply change the operation
from + (add) to * (multiply).

This procedure calculates a power of 2 for any nonnegative
integer n. We changed not only the operation but also the starting
value from 0 to 1.

We can also write this procedure recursively, but first let us
think about how to formulate this mathematically by looking at an
example. Suppose we want to calculate 23:

Recursion | 23

23=2 * 22

=2 * 2 * 21

=2 * 2 * 2 * 20

=2 * 2 * 2 * 1=8.

The explicit 20 is shown to help us think about the
recursive and base cases. From this example, we can formulate two
general rules about exponentiation using 2 as the base:

20=1

2n=2 * 2(n−1).

Now let’s write the recursive procedure for this function.
Try to write this on your own before looking at the solution.

The Structure of Recursive Algorithms

As mentioned above, recursive procedures have a certain structure
that relies on self-reference and splitting the input into cases based
on its value. Here we will discuss the structure of recursive

24 | Recursion

procedures and give some background on the motivation for
recursion.

Before we begin, recall from chapter 1 that a procedure can
be thought of as a specific implementation of an algorithm. While
these are indeed two separate concepts, they can often be used
interchangeably when considering pseudocode. This is because the
use of an algorithm in practice should be made as simple as possible.
Often this is accomplished by wrapping the algorithm in a simple
procedure. This design simplifies the interface, allowing the
programmer to easily use the algorithm in some other software
context such as a program or application. In this chapter, you can
treat algorithm and procedure as the same idea.

Some Background on Recursion

The concept of recursion originated in the realm of mathematics.
It was found that some interesting mathematical sequences could
be defined in terms of themselves, which greatly simplified their
definitions. Take for example the Fibonacci sequence:

{0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, … }.

This sequence is likely familiar to you. The sequence starts
at 0, 0 is followed by 1, and each subsequent value in the sequence
is derived from the previous two elements in the sequence. This
seemingly simple sequence is fairly difficult to define in an explicit
way. Let’s look a bit closer.

Based on the sequence above, we see the following
equations are true:

Recursion | 25

F0 = 0

F1 = 1

F2 = 1

F3 = 2

F4 = 3.

Using this formulation, we may wish to find a function
that would calculate the nth Fibonacci number given any positive
integer, n:

Fn = ?.

Finding such a function that depends only on n is not trivial.
This also leads to some difficulties in formally defining the
sequence. To partially address this issue, we can use a recursive
definition. This allows the sequence to be specified using a set of
simple rules that are self-referential in nature. These recursive rules
are referred to in mathematics as recurrence relations. Let’s look at
the recurrence relation for the Fibonacci sequence:

F0=0

F1=1

26 | Recursion

Fn=Fn−1 + Fn−2.

This gives a simple and perfectly correct definition of the
sequence, and we can calculate the nth Fibonacci number for any
positive integer n. Suppose we wish to calculate the eighth
Fibonacci number. We can apply the definition and then repeatedly
apply it until we reach the F0 and F1 cases that are explicitly defined:

F8=F8−1 + F8−2

=F7 + F6

=(F7−1 + F7−2) + (F6−1 + F6−2)

…and so on.

This may be a long process if we are doing this by hand. This could
be an especially long process if we fail to notice that F7−2 is the same
as F6−1.

A Trade-Off with Recursion

Observing this process leads us to another critical insight about
recursive processes. What may be simple to describe may not be
efficient to calculate. This is one of the major drawbacks of
recursion in computing. You may be able to easily specify a correct
algorithm using recursion in your code, but that implementation
may be wildly inefficient. Recursive algorithms can usually be

Recursion | 27

rewritten to be more efficient. Unfortunately, the efficiency of the
implementation comes with the cost of losing the simplicity of the
recursive code. Sacrificing simplicity leads to a more difficult
implementation. Difficult implementations allow for more bugs.

An Aside on Navigating the Efficiency-Simplicity
Trade-Off

In considering the trade-off between efficiency and simplicity,
context is important, and there is no “right” answer. A good
guideline is to focus on correct implementations first and optimize
when there is a problem (verified by empirical tests). Donald Knuth
references Tony Hoare as saying “premature optimization is the
root of all evil” in programming. This should not be used as an
excuse to write inefficient code. It takes time to write efficient code.
“I was optimizing the code” is a poor excuse for missed deadlines.
Make sure the payoff justifies the effort.

Recursive Structure

The recursive definition of the Fibonacci sequence can be divided
into two parts. The first two equations establish the first two values
of the sequence explicitly by definition for n = 0 and n = 1. The last
equation defines Fibonacci values in the general case for any integer
n > 1. The last equation uses recursion to simplify the general case.
Let’s rewrite this definition and label the different parts.

28 | Recursion

Base Cases

F0 = 0

F1 = 1

Recursive Case

Fn = Fn−1 + Fn−2

Recursive algorithms have a similar structure. A recursive
procedure is designed using the base case (or base cases) and a
recursive case. The base cases may be used to explicitly define the
output of a calculation, or they may be used to signal the end of a
recursive process and stop the repeated execution of a procedure.
The recursive case makes a call to the function itself to solve a
portion of the original problem. This is the general structure of
a recursive algorithm. Let’s use these ideas to formulate a simple
algorithm to calculate the nth Fibonacci number. Before we begin,
let’s write the cases we need to consider.

Recursion | 29

Base Cases

n = 0 the algorithm should return 0

n = 1 the algorithm should return 1

Recursive Case

any other n the algorithm returns the sum of
Fibonacci(n − 1) and Fibonacci(n − 2)

Now we define the recursive algorithm to calculate the nth
Fibonacci number.

In this algorithm, conditional if-statements are used to
select the appropriate action based on the input value of n. If the
value is 0 or 1, the input is handled by a base case, and the function
directly returns the appropriate value. If another integer is input,

30 | Recursion

the recursive case handles the calculation, and two more calls to
the procedure are executed. You may be thinking, “Wait, for every
function call, it calls itself two more times? That doesn’t sound
efficient.” You would be right. This is not an efficient way to
calculate the Fibonacci numbers. We will revisit this idea in more
detail later in the chapter.

Before we move on, let us revisit the two examples from
the introduction, multiplication and exponentiation. We can define
these concepts using recurrence relations too. We will use the
generic letter a for these definitions.

Multiplication by 2

Base Case

a0 = 0

Recursive Case

an = 2 + an−1

Recursion | 31

Powers of 2

Base Case

a0 = 1

Recursive Case

an = 2 * an−1

Looking back at the recursive functions for these algorithms, we see
they have a shared structure that uses conditionals to select the
correct case based on the input, and the base cases and recursive
cases handle the calculation by ending the chain of recursive calls
or by adding to the chain of calls respectively. In the next section,
we will examine some important details of how a computer executes
these function definitions as dynamic processes to generate the
correct result of a calculation.

32 | Recursion

Recursion and the Runtime Stack

Thus far, we have relied on your intuitive understanding of how
a computer executes function calls. Unless you have taken a
computer organization or assembly language course, this process
may seem a little mysterious. How does the computer execute the
same procedure and distinguish the call to recursiveMultiplyBy2(3)
from the call to recursiveMultiplyBy2(2) that arises from the
previous function call? Both calls utilize the same definition, but one
has the value 3 bound to n and the other has the value 2 bound to n.
Furthermore, the result of recursiveMultiplyBy2(2) is needed by the
call to recursiveMultiplyBy2(3) before a value may be returned. This
requires that a separate value of n needs to be stored in memory for
each execution of the function during the evaluation process. Most
modern computing systems utilize what is known as a runtime stack
to solve this problem.

A stack is a simple data structure where data are placed on
the top and removed from the top. Like a stack of books, to get to a
book in the middle, one must first remove the books on top. We will
address stacks in more detail in a later chapter, but we will briefly
introduce the topic. Here we will examine how a runtime stack is
used to store the necessary data for the execution of a recursive
evaluation process.

The Runtime Stack

We will give a rough description of the runtime stack. This should
be taken as a cartoon version or caricature of the actual runtime
stack. We encourage you to supplement your understanding of this
topic by exploring some resources on computer organization and
assembly language. The real-world details of computer systems can
be as important as the abstract view presented here.

Recursion | 33

The runtime stack is a section of memory that stores data
associated with the dynamic execution of many function calls.
When a function is called at runtime, all the data associated with
that function call, including input arguments and locally defined
variables, are placed on the stack. This is known as “pushing” to
the stack. The data that was pushed onto the stack represents
the state of the function call as it is executing. You can think of
this as the function’s local environment during execution. We call
this data stored on the stack a stack frame. The stack frame is a
contiguous section of the stack that is associated with a specific call
to a procedure. There may be many separate stack frames for the
same procedure. This is the case with recursion, where the same
function is called many times with distinct inputs.

Once the execution of a function completes, its data are no
longer needed. At the time of completion, the function’s data are
removed from the top of the stack or “popped.” Popping data from
the runtime stack frees it, in a sense, and allows that memory to be
used for other function calls that may happen later in the program
execution. As the final two steps in the execution of the procedure,
the function’s stack frame is popped, and its return value (if the
function returns a value) is passed to the caller of the function.
The calling function may be a “main” procedure that is driving the
program, or it may be another call to the same function as in
recursion. This allows the calling function to proceed with its
execution. Let’s trace a simple recursive algorithm to better
understand this process.

A Trace of a Simple Recursive Call

Suppose we are running a program that makes a call to
recursiveMultiplyBy2(3). Consider the simple program below.

34 | Recursion

The computer executes programs in a step-by-step
manner, executing one instruction after another. In this example,
suppose that the computer begins execution on line 8 at the start
of the main procedure. As main needs space to store the resulting
value, we can imagine that a place has been reserved for main’s
result variable and that it is stored on the stack. The following figure
shows the stack at the time just before the function is called on line
8.

Figure 2.2

When the program reaches our call to
recursiveMultiplyBy2(3), the n variable for this call is bound with
the 3 value, and these data are pushed onto the stack. The figure
below gives the state of the stack just before the first line of our
procedure begins execution.

Recursion | 35

Figure 2.3

Here the value of 3 is bound to n and the execution
continues line by line. As this n is not 0, the execution would
continue to line 5, where another recursive call is made to
recursiveMultiplyBy2(2). This would push another stack frame onto
the stack with 2 bound to n. This is shown in the following figure.

Figure 2.4

You can imagine this process continuing until we reach
a call that would be handled by the base case of our recursive
algorithm. The base case of the algorithm acts as a signal that ends
the recursion. This state is shown in the following figure:

36 | Recursion

Figure 2.5

Next, the process of completing the calculation begins. The
resulting value is returned, and the last stack frame is popped from
the top of the stack.

Figure 2.6

Once the call for n = 0 gets the returned value of 0, it may
then complete its execution of line 5. This triggers the next pop
from the stack, and the value of 2 + 0 = 2 is returned to the prior call
with n = 2. Let’s look at the stack again.

Recursion | 37

Figure 2.7

As we can see, the chain of calls is unwinding as the results
are calculated in turn. This process continues. As the results are
calculated and stack frames are popped, it should be clear that less
memory is being used by the program. It should be noted that this
implies a memory cost for deep chains of recursion. Finally, the last
recursive call completes its line 5, and the value is returned to the
main function as shown below.

Figure 2.8

Now the main function has the result of our recursive
algorithms. The value 6 is bound to the “result” variable, and when

38 | Recursion

the program executes the print command, “6” would appear on the
screen. This concludes our trace of the dynamic execution of our
program.

Why Do We Need to Understand the Runtime
Stack?

You may now be thinking, “This seems like a lot of detail. Why do
we need to know all this stuff?” There are two main reasons why
we want you to better understand the runtime stack. First, it should
be noted that function calls are not free. There is overhead involved
in making a call to a procedure. This involves copying data to the
stack, which takes time. The second concern is that making function
calls, especially recursive calls, consumes memory. Understanding
how algorithms consume the precious resources of time and space
is fundamental to understanding computer science. We need to
understand how the runtime stack works to be able to effectively
reason about memory usage of our recursive algorithms.

More Examples of Recursive Algorithms

We have already encountered some examples of recursive
algorithms in this chapter. Now we will discuss a few more to
understand their power.

Recursive Reverse

Suppose you are given the text string “HELLO,” and we wish to print
its letters in reverse order. We can construct a recursive algorithm

Recursion | 39

that prints a specific letter in the string after calling the algorithm
again on the next position. Before we dive into this algorithm, let’s
explain a few conventions that we will use.

First, we will treat strings as lists or arrays of characters.
Characters are any symbols such as letters, numbers, or other type
symbols like “*,” “+,” or “&.” Saying they are lists or arrays means
that we can access distinct positions of a string using an index.
For example, let message be a string variable, and let its value be
“HELLO.” If we access the elements of this array using zero-based
indexing, then message[0] is the first letter of the string, or “H.”
We will be using zero-based indexing (or 0-based indexing) in this
textbook. Switching between 0-based and 1-based indexing should
be easy, although it can be tricky and requires some thought when
converting complex algorithms. Next, saying that a string is an array
is incorrect in most programming languages. An array is specifically
a fixed-size, contiguous block of memory designed to store multiple
values of the same type. Most programming languages provide a
string type that is more robust. Strings are usually represented as
data structures that provide more functionality than just a block
of memory. We will treat strings as a data structure that is like an
array with a little more functionality. For example, we will assume
that the functionality exists to determine the size of a string from
its variable in constant time or O(1). Specifically, we will use the
following function.

Back to the algorithm, we will define the base and recursive
cases. The base case that terminates the algorithm will be reached
by the algorithm when the position to print is greater than or equal
to the length of the string. The recursive case will call the algorithm
for the next position and then print the letter at the current position
after the recursive call.

40 | Recursion

Calling recReverse(“HELLO”, 0) should give the following
text printed to the screen:

O
L
L
E
H
This demonstrates that the recursive algorithm can print

the characters of a string in reverse order without using excessive
index manipulation. Notice the order of the print statement and
the recursive call. If the order of lines 7 and 8 were switched, the
characters would print in their normal order. This algorithm
resembles another recursive algorithm for visiting the nodes of a
tree data structure that you will see in a later chapter.

Wrappers and Helper Functions for Recursion

You may have noticed that recReverse(“HELLO”, 0) seems like an
odd interface for a function that reverses a string. There is an extra
piece of state, the value 0, that is needed anytime we want to
reverse something. Starting the reverse process in the middle of the
string at index 3, for example, seems like an uncommon use case.
In general, we would expect that reversing the string will almost
always be done for the entire string. To address this problem, we
will make a helper function. Let’s create this helper function so we
can call the reverse function without giving the 0 value.

Recursion | 41

Now we may call reverse(“HELLO”), which in turn, makes
a call that is equivalent to revReverse(“HELLO”, 0). This design
method is sometimes called wrapping. The recursive algorithm is
wrapped in a function that simplifies the interface to the recursive
algorithm. This is a very common pattern for dealing with recursive
algorithms that need to carry some state of the calculation as input
parameters. Some programmers may call reverse the wrapper and
recReverse the helper. If your language supports access specifiers
like “public” and “private,” you should make the wrapper a “public”
function and restrict the helper function by making it “private.” This
practice prevents programmers from accidentally mishandling the
index by restricting the use of the helper function.

Greatest Common Divisor

An algorithm for the greatest common divisor (GCD) of two integers
can be formulated recursively. Suppose we have the fraction 16/
28. To simplify this fraction to 4/7, we need to find the GCD of 16
and 28. The method known as Euclid’s algorithm solves this problem
by dividing two numbers, taking their remainder after division, and
repeating the division step with one of the numbers and the
remainder. Given two integers a and b, the algorithm proceeds
according to this general process:

1. Take two integers a and b, and let a be larger than b.
2. Find the remainder of a / b, and let that number be r.
3. If r is 0, b is the GCD; otherwise, repeat the process with b and

r in place of a and b in step 1.

42 | Recursion

The equations below illustrate this process. Here, let a
equal 28, and let b equal 16:

a / b

28 / 16=1 with remainder 12

16 / 12=1 with remainder 4

12 / 4=3 with remainder 0

Since the remainder is 0, the GCD is 4.

For the fraction 16/28, dividing the denominator and the
numerator by 4 gives the simplified fraction 4/7. This is illustrated
below:

(16 / 4) / (28 / 4) = 4 / 7.

Before we start writing the algorithm, let us think about the
base case and the recursive case. What signals the end of recursion?
If the remainder of a divided by b is zero, this means that b is
the greatest common divisor. This should be our base case. With
any other inputs, the algorithm should make a recursive call with
updated inputs. Let us examine one way to implement this
algorithm. We will use the keyword mod to mean the remainder of
two integers. For example, we will take the expression 7 mod 3 to
be evaluated to the value 1. The keyword mod is a shortened version
of the word “modulo,” which is the operation that calculates integer
remainders after division.

Recursion | 43

This process will continue to reduce a and b in sequence
until the remainder is 0, ultimately finding the greatest common
divisor. This provides a good example of a recursive numerical
algorithm that has a practical use, which is for simplifying fractions.

Recursive Find Minimum

Finding the minimum value in a collection of numbers can be
formulated as a recursive algorithm. Let us use an array of integers
for this algorithm. Our algorithm will use the helper and wrapper
pattern, and it will use an extra parameter to keep track of the
current minimum value. Let us begin by specifying the core
algorithm as a helper function. Here, as in recReverse, we assume a
length function can provide the length of the array:

For this algorithm, our base case occurs when the recursive
process reaches the last position of the array. This signals the end
of recursion, and the currentMin value is returned. In the recursive

44 | Recursion

case, we compare the value of the current minimum with the value
at the current position. Next, a recursive call is made that uses the
appropriate current minimum and increases the position.

Recursive Algorithms and Complexity
Analysis

Now that we have a better understanding of recursive algorithms,
how can their complexity be evaluated? Computational complexity
is usually evaluated in terms of time complexity and space
complexity. How does the algorithm behave when the size of the
input grows arbitrarily large with respect to runtime and memory
space usage? Answering these questions may be a little different for
recursive algorithms than for some other algorithms you may have
seen.

A Warm-Up, Nonrecursive Example: Powers of 2

Let us begin with the nonrecursive power-of-2 algorithm from the
beginning of the chapter reprinted here:

For this algorithm, we observe a loop that starts at 1 and
continues to n. This means that we have a number of steps roughly
equal to n. This is a good clue that the time complexity is linear or
O(n). For an n equal to 6, we could expand this procedure to the

Recursion | 45

following sequence of 5 multiplications: 2 * 2 * 2 * 2 * 2 * 2. If we
added 1 to n, we would have 6 multiplications for an n of 7. Actually,
according to the algorithm as written, the correct sequence for an n
equal to 6 would be 1 * 2 * 2 * 2 * 2 * 2 * 2. When n is 6, this sequence
has exactly n multiplications counting the first multiplication by 1.
This could be optimized away, but it is a good demonstration that
with or without the optimization the time complexity would be O(n).
As a reminder, O(n − 1) is equivalent to O(n). The time complexity
O(n) is also known as linear time complexity.

For this algorithm, what is the space complexity? First, let
us ask how many variables are used. Well, space is needed for the
input parameter n and the product variable. Are any other variables
needed? In a technical sense, perhaps some space would be needed
to store the literal numerical values of 1 and 2, but this may depend
on the specific computer architecture in use. We ignore these issues
for now. That leaves the variables n and product. If the input
parameter n was assigned the value of 10, how many variables would
be needed? Just two variables would be needed. If n equaled 100,
how many variables would be needed? Still, only two variables would
be needed. This leads us to the conclusion that only a constant
number of variables are needed regardless of the size of n.
Therefore, the space complexity of this algorithm is O(1), also known
as constant space complexity.

In summary, this iterative procedure takes O(n) time and
uses O(1) space to arrive at the calculated result. Note: This analysis
is a bit of a simplification. In reality, the size of the input is
proportional to log(n) of the value, as the number n itself is
represented in approximately log2(n) bits. This detail is often
ignored, but it is worth mentioning. The point is to build your
intuition for Big-O analysis by thinking about how processes need
to grow with larger inputs.

46 | Recursion

Recursive Powers of 2

Now let us consider the power-of-2 recursive algorithm from earlier
and analyze its complexity.

To analyze the complexity of this algorithm, let us examine
some example input values. For an n equal to 1, the algorithm begins
with recursivePowerOf2(1). This call evaluates 2 *
recursivePowerOf2(1). This expression then becomes 2 * 1, which is
2. For an n equal to 3, we have the following sequence:

recursivePowerOf2(3) -> 2 *
recursivePowerOf2(2)

-> 2 * 2 * recursivePowerOf2(1)
-> 2 * 2 * 2 * recursivePowerOf2(0)
-> 2 * 2 * 2 * 1

So for an n equal to 3, we have three multiplications. From
this expansion of the calls, we can see that this process ultimately
resembles the iterative process in terms of the number of steps. We
could imagine that for an n equal to 6, recursivePowerOf2(6) would
expand into 2 * 2 * 2 * 2 * 2 * 2 * 1 equivalent to the iterative process.
From this, we can reason that the time complexity of this recursive
algorithm is O(n). This general pattern is sometimes called a linear
recursive process.

The time complexity of recursive algorithms can also be
calculated using a recurrence relation. Suppose that we let T(n)
represent the actual worst-case runtime of a recursive algorithm
with respect to the input n. We can then write the time complexity
for this algorithm as follows:

Recursion | 47

T(0) = 1

T(n) = 1 + T(n − 1).

This makes sense, as the time complexity is just the cost of
one multiplication plus the cost of running the algorithm again with
an input of n − 1 (whatever that may be). When n is 0, we must return
the value 1. This return action counts as a step in the algorithm.

Now we can use some substitution techniques to solve this
recurrence relation:

T(n)=1 + T(n − 1)

=1 + 1 + T(n − 2)

=2 + T(n − 2)

=2 + 1 + T(n − 3)

=3 + T(n − 3).

Here we start to notice a pattern. If we continue this out to T(n − n)
= T(0), we can solve the relationship:

T(n)=n + T(n − n)

=n + T(0)

48 | Recursion

=n + 1.

We see that T(n) = n + 1, which represents the worst-case time
complexity of the algorithm. Therefore, the algorithm’s time
complexity is O(n + 1) = O(n).

Next, let us analyze the space complexity. You may try to
approach this problem by checking the number of variables used
in the recursive procedure that implements this algorithm.
Unfortunately, recursion hides some of the memory demands due
to the way procedures are implemented with the runtime stack.
Though it appears that only one variable is used, every call to the
recursive procedure keeps its own separate value for n. This leads
to a memory demand that is proportional to the number of calls
made to the recursive procedure. This behavior is illustrated in the
following figure, which presents a representation of the runtime
stack at a point in the execution of the algorithm. Assume that
recursivePowerOf2(3) has been called inside main or another
procedure to produce a result, and we are examining the stack when
the last call to recursivePowerOf2(0) is made during this process.

Recursion | 49

Figure 2.9

The number of variables needed to calculate
recursivePowerOf2(3) is proportional to the size of the input. The
figure showing the call stack has a frame for each call starting with
3 and going down to 0. If our input increased, our memory demand
would also increase. This observation leads to the conclusion that
this algorithm requires O(n) space in the worst case.

Tail-Call Optimization

In considering the two previous algorithms, we can compare them
in terms of their time and space scaling behavior. The imperative
powerOf2 implementation uses a loop. This algorithm has a time
complexity of O(n) and a space complexity of O(1). The
recursivePowerOf2 algorithm has a time complexity of O(n), but
its space complexity is much worse at O(n). Fortunately, an
optimization trick exists that allows recursive algorithms to reduce
their space usage. This trick is known as tail-call optimization. If
your language or compiler supports tail-call optimization, recursive
algorithms can be structured to use the same amount of space
as their corresponding iterative implementations. Actually, both
algorithms would be considered iterative, as they iteratively update
a fixed set of state variables. Let us examine a tail-call optimization
example in greater detail.

To fix our recursivePowerOf2 implementation’s space
complexity issues, we will first slightly modify our algorithm. We
will add a state variable that will hold the running product. This
serves the same purpose as the product variable in our iterative loop
implementation.

50 | Recursion

For this algorithm to work correctly, any external call
should be made with product set to 1. This ensures that an exponent
of n equal to 0 returns 1. This means it would be a good idea to wrap
this algorithm in a wrapper function to avoid unnecessary errors
when a programmer mistakenly calls the algorithm without product
set to 1. This simple wrapper function is presented below:

To understand how tail-call optimization works, let us
think about what would happen on the stack when we made a
call like recursivePowerOf2(1, 3) using our new algorithm (we will
ignore the wrapper for this discussion). The stack without tail-call
optimization would look like the following figure:

Recursion | 51

Figure 2.10

The key observation of tail-call optimization is that when
the recursive call is at the tail end of the procedure (in this case,
line 5), no information is needed from the current stack frame.
This means that the current frame can simply be reused without
consuming more memory. The following figure gives an illustration
of recursivePowerOf2(1, 3) after the first recursive tail-call in the
execution process.

Figure 2.11

Using tail-call optimization, our new recursivePowerOf2
algorithm has the same time complexity O(n) and space complexity
O(1) as the loop-based iterative implementation. Keep in mind that
tail-call optimization is a feature of either your interpreter or the
compiler. You may wish to check if it is supported by your language
(https://en.wikipedia.org/wiki/Tail_call#By_language).

52 | Recursion

Powers of 2 in O(log n) Time

A clever algorithm is presented in Structure and Interpretation of
Computer Programs (SICP, Abelson and Sussman, 1996) that
calculates powers of any base in O(log n) time. Let us examine this
algorithm to help us understand some recursive algorithms that are
faster—or rather, scale better—than O(n) time.

We will examine the same problem as above, calculating the
nth power of 2. The key idea of this algorithm takes advantage of the
fact that 2n = (2n/2)2 when n is even and 2 * 2n−1 when n is odd. To
implement this algorithm, we must first define two helper functions.
One function will square an input number, and the other function
will check if a number is even. We will define them here using mod
to indicate the remainder after division.

After defining these two functions, we will consider the
bases and recursive cases for which we need to account. If n is 0, the
algorithm should return 1 according to the mathematical definition
of any base value raised to an exponent of 0. This will be one of
our cases. Next, if the n is even, we will square the result of a
recursive call to the algorithm passing the value of n/2. This code
is equivalent to our calculation of (2n/2)2. Lastly, for the odd case,
we will calculate 2 times the result of a recursive call that passes
the value of n − 1. This code handles the odd case equivalent to 2
* 2n−1 and sets up the use of our efficient even exponent case. The
algorithm is presented below:

Recursion | 53

Let us think about the process this algorithm uses to
calculate 29. This process starts with a call to fastPowerOf2(9). Since
9 is odd, we would multiply 2 * fastPowerOf2(8). This expression
then expands to 2 * square(fastPowerOf2(4)). Let us look at this in
more detail.

fastPowerOf2(9)->2 * fastPowerOf2(8)
->2 * square(fastPowerOf2(4))
->2 * square(square(fastPowerOf2(2)))
->2 *

square(square(square(fastPowerOf2(1))))
->2 * square(square(square(2 *

fastPowerOf2(0))))
->2 * square(square(square(2 * 1)))
->2 * square(square(4))
->2 * square(16)
->2 * 256
->512

It may not be clear that this algorithm is faster than the
previous recursivePowerOf2, which was bounded by O(n).
Considering the linear calculation of 29 would look like this: 2 * 2 *
2 * 2 * 2 * 2 * 2 * 2 * 2 with 9 multiplications. For this algorithm,
we could start thinking about the calculation that is equivalent to
2 * square(square(square(2 * 1))). Our first multiplication is 2 * 1.
Next, the square procedure multiplies 2 * 2 to get 4. Then 4 is
squared, and then 16 is squared for 2 more multiplications. Finally,
we get 2 * 256, giving the solution of 512 after only 5 multiply
operations. At least for an n of 9, fastPowerOf2 uses fewer multiply
operations. From this, we could imagine that for larger values of

54 | Recursion

n, the fastPowerOf2 algorithm would yield even more savings with
fewer total operations compared to the linear algorithm.

Let us now examine the time complexity of fastPowerOf2
using a recurrence relation. The key insight is that roughly every
time the recursive algorithm is called, n is cut in half. We could
model this as follows: Let us assume that there is a small constant
number of operations associated with each call to the recursive
procedure. We will represent this as c. Again, we will use the
function T(n) to represent the worse-case number of operations for
the algorithm. So for this algorithm, we have T(n) = c + T(n/2). Let us
write this and the base case as a recurrence relation:

T(0)=c

T(n)=c + T(n/2).

To solve this recurrence problem, we begin by making
substitutions and looking for a pattern:

T(n)=c + T(n/2)

 =c + c + T(n/4)

 =c + c + c + T(n/8).

We are beginning to see a pattern, but it may not be
perfectly clear. The key is in determining how many of those
constant terms there will be once the expression of T(n/x) becomes
1 or 0. Let us rewrite these terms in a different way:

Recursion | 55

T(n)=c + T(n/21)

 =2c + T(n/22)

 =3c + T(n/23).

Now we seek a pattern that is a little clearer:

T(n)=k * c + T(n/2k).

So when will n/2k be 1?
We can solve for k in the following equation:

n/2k=1

2k * (n/2k)=2k * 1

n=2k.

Now taking the log2 of each side gives the following:

log2 n=k.

56 | Recursion

Now we can rewrite the original formula:

T(n)=log2 n * c + T(1).

According to our algorithm, with n equal to 1, we use the
odd case giving 2 * fastPowerOf2(0) = 1. So we could reason that
T(1) = 2c. Finally, we can remove the recursive terms and with a little
rewriting arrive at the time complexity:

T(n)=log2 n * c + T(1)

=log2 n * c + 2c

=c * (log2 n + 2).

Therefore, our asymptotic time complexity is O(log n)
Here we have some constants and lower-order terms that

lead us to a time complexity of O(log n). This means that the scaling
behavior of fastPowerOf2 is much, much better than our linear
version. For reference, suppose n was set to 1,000. A linear
algorithm would take around 1,000 operations, whereas an O(log n)
algorithm would only take around 20 operations.

As for space complexity, this algorithm does rely on a
nested call that needs information from previous executions. This
requirement is due to the square function that needs the result
of the recursive call to return. This implementation is not tail-
recursive. In determining the space complexity, we need to think
about how many nested calls need to be made before we reach a
base case to signal the end of recursion. For a process like this, all

Recursion | 57

these calls will consume memory by storing data on the runtime
stack. As n is divided each time, we will reach a base case after O(log
n) recursive calls. This means that in the worst case, the algorithm
will have O(log n) stack frames taking up memory. Put simply, its
space complexity is O(log n).

Exercises

1. Write a recursive function like that of powerOf2
called “pow” that takes a base and exponent variables and
computes the value of base raised to the exponent power
for any integer base >= 1 and any integer exponent >= 0.

2
. The sequence {0, 1, 3, 6, 10, 15, 21, 28, … } gives the

sequence of triangular numbers.

a. Give a recursive definition of the triangular
numbers (starting with n = 0).

b. Give a recursive algorithm for calculating the
nth triangular number.

3
. Modify the recMin algorithm to create a function

called recMinIndex. Your algorithm should return the
index of the minimum value in the array rather than the
minimum value itself. Hint: You should add another
parameter to the helper function that keeps track of the
minimum value’s index.

4
. Write an algorithm called simplify that prints the

58 | Recursion

simplified output of a fraction. Have the procedure accept
two integers representing the numerator and
denominator of a fraction. Have the algorithm print a
simplified representation of the fraction. For example,
simplify(8, 16) should print “1 / 2.” Use the GCD algorithm
as a subroutine in your procedure.

5
. Implement the three powerOf2 algorithms

(iterative, recursive, and fastPowerOf2) in your language
of choice. Calculate the runtime of the different
algorithms, and determine which algorithms perform best
for which values of n. Using your data, create a “super”
algorithm that checks the size of n and calls the most
efficient algorithm depending on the value of n.

References

Abelson, Harold, and Gerald Jay Sussman. Structure and
Interpretation of Computer Programs. The MIT Press,
1996.

Recursion | 59

3. Sorting

Learning Objectives

After reading this chapter you will…

• understand the problem of sorting a set of numbers
(or letters) in a defined order.

• be able to implement a variety of well-known
sorting algorithms.

• be able to evaluate the efficiency and relative
advantages of different algorithms given different
input cases.

• be able to analyze sorting algorithms to determine
their average-case and worst-case time and space
complexity.

Introduction

Applying an order to a set of objects is a common general problem
in life as well as computing. You may open up your email and see
that the most recent emails are at the top of your inbox. Your
favorite radio station may have a top-10 ranking of all the new songs
based on votes from listeners. You may be asked by a relative to
put a shelf of books in alphabetical order by the authors’ names. All
these scenarios involve ordering or ranking based on some value.

60 | Sorting

To achieve these goals, some form of sorting algorithm must be
used. A key observation is that these sorting problems rely on a
specific comparison operator that imposes an ordering (“a” comes
before “b” in alphabetical order, and 10 < 12 in numerical order). As
a terminology note, alphabetical ordering is also known as lexical,
lexicographic, or dictionary ordering. Alphabetical and numerical
orderings are usually the most common orderings, but date or
calendar ordering is also common.

In this chapter, we will explore several sorting algorithms.
Sorting is a classic problem in computer science. These algorithms
are classic not because you will often need to write sorting
algorithms in your professional life. Rather, sorting offers an easy-
to-understand problem with a diverse set of algorithms, making
sorting algorithms an excellent starting point for the analysis of
algorithms.

To begin our study, let us take a simple example sorting
problem and explore a straightforward algorithm to solve it.

An Example Sorting Problem

Suppose we are given the following array of 8 values and asked to
sort them in increasing order:

Figure 3.1

How might you write an algorithm to sort these values?

Sorting | 61

Our human mind could easily order these numbers from smallest
to largest without much effort. What if we had 20 values? 200? We
would quickly get tired and start making mistakes. For these values,
the correct ordering is 22, 24, 27, 35, 43, 45, 47, 48. Give yourself
some time to think about how you would solve this problem. Don’t
consider arrays or indexes or algorithms. Think about doing it just
by looking at the numbers. Try it now.

Reflect on how you solved the problem. Did you use your
fingers to mark the positions? Did you scan over all the values
multiple times? Taking some time to think about your process may
help you understand how a computer could solve this problem.

One simple solution would be to move the smallest value
in the list to the leftmost position, then attempt to place the next
smallest value in the next available position, and so on until reaching
the last value in the list. This approach is called Selection Sort.

Selection Sort

Selection Sort is an excellent place to start for algorithm analysis.
This sort can be constructed in a very simple way using some
bottom-up design principles. We will take this approach and work
our way up to a conceptually simple sorting algorithm. Before we
get started, let us outline the Selection Sort algorithm. As a
reminder, we will use 0-based indexing with arrays:

• Start by considering the first or 0 position of the array.
• Find the index of the smallest value in the array from position

0 to the end.
• Exchange the value in position 0 with the smallest value (using

the index of the smallest value).
• Repeat the process by considering position 1 of the array (as

the smallest value is now in position 0).

62 | Sorting

The algorithm works by repeatedly selecting the smallest
value in the given range of the array and then placing it in its proper
position along the array starting in the first position. With a little
thought for our design, we can construct this algorithm in a way
that greatly simplifies its logic.

Selection Sort Implementation

Let us start by creating the exchange function. Our exchange
function will take an array and two indexes. It will then swap the
value in the given positions within the array. For example,
exchange(array, 1, 3) will take the value in position 1 and place it in
position 3 as well as taking the value in position 3 and placing it
in position 1. Let us look at what might happen by calling it on our
previous array.

Here is our previous array with indexes added:

Figure 3.2

After calling exchange(array, 1, 3), we get this:

Sorting | 63

Figure 3.3

This function is the first tool we need to build Selection
Sort. Let’s explore one implementation of this function.

This function will do nothing if the indexes are identical.
When we have separate indexes, the corresponding values in the
array are exchanged. This evolves the state of the array by switching
two values. In this implementation, we do not make any checks to
see if an exchange could be made. It may be worth checking if the
indexes are identical. It also may be worth checking if the indexes
are valid (for example, between 0 and n − 1), but this exercise is left
to the reader.

Now we need another tool to help us “select” the next
smallest value to put in its correct order. For this task, we need
something that is conceptually the same as a findMin function.
For our algorithms, we would need to make a few modifications
to the regular findMin. The two additions we need to make are as
follows: (1) We need to get the index of the smallest value, not just
its value. (2) We want to search only within a given range. The last
modification will let us choose the smallest value for position 0 and
then choose the second smallest value for position 1 (chosen from
positions 1 to n − 1).

Let us look at one implementation for this algorithm.

64 | Sorting

For this algorithm, we can set any start coordinate and find
the index of the smallest value from the start to the end of the array.
This simple procedure gives us a lot of power, as we will learn.

Now that we have our tools created, we can write Selection
Sort. This leads to a simple implementation thanks to the design
that decomposed the problem into smaller tasks.

We now have our first sorting algorithm. This algorithm
provides a great example of how design impacts the complexity
of an implementation. Combining a few simple ideas leads to a
powerful new tool. This practice is sometimes called encapsulation.
The complexity of the algorithm is encapsulated behind a few
functions to provide a simple interface. Mastering this art is the key
to becoming a successful computing professional. Amazing things
can be built when the foundation is functional, and good design
removes a lot of the difficulty of programming. Try to take this
lesson to heart. Good design gives us the perspective to program in
a manner that is closer to the way we think. Context that improves
our ability to think about problems improves our ability to solve
problems.

Sorting | 65

Selection Sort Complexity

It should be clear that the sorting of the array using Selection Sort
does not use any extra space other than the original array and a few
extra variables. The space complexity of Selection Sort is O(n).

Analyzing the time complexity of Selection Sort is a little
trickier. We may already know that the complexity of finding the
minimum value from an array of size n is O(n) because we cannot
avoid checking every value in the array. We might reason that there
is a loop that goes from 1 to n in the algorithm, and our findMinIndex
should also be O(n). This idea leads us to think that calling an O(n)
function n times would lead to O(n2). Is this correct? How can we
be sure? Toward the end of the algorithm’s execution, we are only
looking for the minimum value’s index from among 3, 2, or 1 values.
This seems close to O(1) or constant time. Calling an O(1) function
n times would lead to O(n), right? Practicing this type of reasoning
and asking these questions will help develop your algorithm analysis
skills. These are both reasonable arguments, and they have helped
establish a bound for our algorithm’s complexity. It would be safe
to assume that the actual runtime is somewhere between O(n) and
O(n2). Let us try to tackle this question more rigorously.

When our algorithm begins, nothing is in sorted order
(assume a random ordering). Our index from line 3 of selectionSort
starts at 0. Next, findMinIndex searches all n elements from 0 to n −
1. Then we have the smallest value in position 0, and index becomes
1. With index 1, findMinIndex searches n − 1 values from 1 to n − 1.
This continues until index becomes n − 1 and the algorithm finishes
with all values sorted.

We have the following pattern:
With index at 0 n comparison operations are performed by
findMinIndex.
With index at 1 n − 1 comparison operations are performed
by findMinIndex.

66 | Sorting

With index at 2 n − 2 comparison operations are performed
by findMinIndex.
…
With index at n − 2 2 comparison operations are performed by
findMinIndex.

With index at n − 1 1 comparison operation is performed by
findMinIndex.

Our runtime is represented by the sum of all these
operations. We could rewrite this in terms of the sum over the
number of comparison operations at each step:

n + (n − 1) + (n − 2) + … 3 + 2 + 1.

Can we rewrite this sequence as a function in terms of n to give the
true runtime? One way to solve this sequence is as follows:

Let S = n + (n − 1) + (n − 2) + … 3 + 2 + 1.

Multiplying S by 2 gives

2 * S=[n + (n − 1) + (n − 2) + … + 3 + 2 + 1] + [n + (n − 1) +
(n − 2) + … + 3 + 2 + 1].

We can rearrange the right-hand side to highlight a useful pattern:

Sorting | 67

2 * S=[n + (n − 1) + (n − 2) + … + 3 + 2 + 1]

+ [1 + 2 + 3 + … + (n − 2) + (n − 1) + n].

We notice that lining them up with one sequence reversed leads to
n terms of n + 1:

2 * S=(n + 1) + (n + 1) + (n + 1) + … + (n + 1) + (n + 1) + (n +
1)

=n * (n + 1).

Now we can divide by two to get an exact function for
this summation sequence, which is also known as a variant of the
arithmetic series:

S=[n * (n + 1)]/2.

To view it in polynomial terms, we can distribute the n term
and move the fraction:

68 | Sorting

S=(½)*[n2 + n]

=(½) n2 + (½) n.

In Big-O terms, the time complexity of Selection Sort is
O(n2). This is also known as quadratic time.

Insertion Sort

Insertion Sort is another classic sorting algorithm. Insertion Sort
orders values using a process like organizing books on a bookshelf
starting from left to right. Consider the following shelf of
unorganized books:

Figure 3.4

Sorting | 69

Currently, the books are not organized alphabetically.
Insertion Sort starts by considering the first book as sorted and
placing an imaginary separator between the sorted and unsorted
books. The algorithm then considers the first book in the unsorted
portion.

Figure 3.5

According to the image, the algorithm is now considering
the book called Linear Algebra. The algorithm will now try to place
this new book into its proper position in the sorted section of the
bookshelf. The letter “C” comes before “L,” so the book should be
placed to the right of the Calculus book, and the algorithm will
consider the next book. This state is shown in the following image:

70 | Sorting

Figure 3.6

Now we consider the Algorithms book. In this case, the
Algorithms book should come before both the Calculus and Linear
Algebra books, but there is no room on the shelf to just place it
there. We must make room by moving the other books over.

The actual process used by the algorithm considers the
book immediately to the left of the book under consideration. In
this case, the Linear Algebra book should come after the Algorithms
book, so the Linear Algebra book is moved over one position to the
right. Next, the Calculus book should come after the Algorithms
book, and the Calculus book is moved one position to the right.
Now there are no other books to reorder, so the Algorithms book
is placed in the correct position on the shelf. This situation is
highlighted in the following image:

Sorting | 71

Figure 3.7

After adjusting the position of these books, we have the
state displayed below:

72 | Sorting

Figure 3.8

Now we consider the textbook on Discrete Mathematics.
First, we examine the Linear Algebra book to its left. The Linear
Algebra book should go after the Discrete Mathematics book, and it
is moved to the right by one position. Now examining the Calculus
book informs us that no other sorted books should be after the
Discrete Mathematics book. We will now place the Discrete
Mathematics book in its correct place after the Calculus book. The
Algorithms book at the far left is not even examined. This process is
illustrated in the figure below:

Figure 3.9

Once the Discrete Mathematics book is placed in its
correct position, the process begins again, considering the next
book as shown below:

Sorting | 73

Figure 3.10

This brief illustration should give you an idea of how the
Insertion Sort algorithm works. We consider a particular book and
then “insert” it into the correct sorted position by moving books
that come after it to the right by one position. The sorted portion
will grow as we consider each remaining book in the unsorted
portion. Finally, the unsorted section of the bookcase will be empty,
and all the books will be sorted properly. This example also
illustrates that there are other types of ordering. Numerical
ordering and alphabetical ordering are probably the most common
orderings you will encounter. Date and time ordering are also
common, and sorting algorithms will work just as well with these as
with other types of orderings.

Insertion Sort Implementation

For our implementation of Insertion Sort, we will only consider

74 | Sorting

arrays of integers as with Selection Sort. Specifically, we will assume
that the values of positions in the array are comparable and will
lead to the correct ordering. The process will work equally well with
alphabetical characters as with numbers provided the relational
operators are defined for these and other orderable types. We will
examine a way to make comparisons more flexible later in the
chapter.

This algorithm relies on careful manipulation of array
indexes. Manipulation of array indexes often leads to errors as
humans are rarely careful. As always, you are encouraged to test
your algorithms using different types of data. Let us test our
implementation using the array from before. We will do this by using
a trace of an algorithm. A trace is just a way to write out or visualize
the sequence of steps in an algorithm. Consider the following array
with indexes:

Figure 3.11

The algorithm will start as follows with endSorted set to

Sorting | 75

1 and end set to 8. Entering the body of the while-loop, we set
currentValue to the value 27, and index is set to endSorted, which is
1. The image below gives an illustration of this scenario:

Figure 3.12

We now consider the inner loop of the algorithm. The
compound condition of index > 0 and currentValue < array[index −
1] is under consideration. Index is greater than 0, check! This part
is true. The value in array[index − 1] is the value at array[1 − 1] or
array[0]. This value is 43. Now we consider 27 < 43, which is true.
This makes the compound condition of the while-loop true, so we
enter the loop. This executes set array[index] to array[index − 1],
which copies 43 into position array[index] or array[1]. Next, the last
command is executed to update index to index − 1 or 0. This gives
us the following state:

76 | Sorting

Figure 3.13

You may be thinking, “What about 27? Is it lost?” No, the
value of 27 was saved in the currentValue variable. We now loop
and check index > 0 and currentValue < array[index − 1] again.
This time index > 0 fails with index equal to 0. The algorithm then
executes set array[index] to currentValue. This operation places 27
into position 0, providing the correct order. Finally, the endSorted
variable is increased by 1 and now points to the next value to
consider. At the start of the next loop, after currentValue and index
are set, we have the state of execution presented below:

Sorting | 77

Figure 3.14

Next, the algorithm would check the condition of the inner
loop. Here index is greater than 0, but currentValue is not less than
array[index − 1], as 45 is not less than 43. Moving over the loop,
currentValue is placed back into its original position (line 12), and
the indexes are updated at the end of the loop as usual. Moving to
the next value to consider, before line 7 we now have the scenarios
presented below:

78 | Sorting

Figure 3.15

From this image, we can imagine what would happen next.
The value 24 is smaller than all these values. Let us trace how the
algorithm would proceed. As 24 is less than 45, the body will execute
copying 45 to the right and updating the index.

Sorting | 79

Figure 3.16

In the above image, we notice that 24 is less than 43.
Therefore, we copy and update our indexes. This gives the following
successive states of execution:

Figure 3.17

Then…

80 | Sorting

Figure 3.18

Now with index 0, the inner loop’s body will not execute.
We will copy the currentValue into the index position and begin the
outer loop’s execution again. At the start of the next inner loop, we
have the scene below:

Sorting | 81

Figure 3.19

These illustrations give you an idea of the execution of
the Insertion Sort. These drawings are sometimes called traces.
Creating algorithm tracing will give a good idea of how your
algorithm is working and will also help you understand if your
algorithm is correct or not. From these diagrams, we can infer that
the endSorted value will grow to reach the end of the array and all
the values will eventually be properly sorted. You should attempt to
complete the rest of this trace for practice.

Insertion Sort Complexity

From this example execution, you may have noticed that sometimes
Insertion Sort does a lot of work, but other times it seems that
very little needs to be done. This observation allows us to consider
a different way to analyze algorithms—namely, the best-case time
complexity. Before we address this question, let us analyze the
worst-case space complexity and the worst-case time complexity of
Insertion Sort.

The space complexity of Insertion Sort should be easy to
determine. We only need space for the array itself and a few other
index- and value-storage variables. This means that our memory
usage is O(n) for the array and a small constant number of other
values where c << n (a constant much smaller than n). This means
our memory usage is bounded by n + c, and we have an O(n) space
complexity for Insertion Sort. The memory usage of Insertion Sort
takes O(n) for the array itself and O(1) for the other necessary
variables. This O(1) memory cost for the indexes and other values
is sometimes referred to as the auxiliary memory. It is the extra

82 | Sorting

memory needed for the algorithm to function in addition to the
storage cost of the array values themselves. This auxiliary memory
could be freed after the algorithm completes while keeping the
sorted array intact. We will revisit auxiliary memory later in the
chapter.

When considering the time complexity, we are generally
interested in the worst-case scenario. When we talk about a “case,”
we mean a particular instance of the problem that has some special
features that impact the algorithm’s performance. What special
features of the way our values are organized might lead to a good or
bad case for our algorithm? In what situation would we encounter
the absolute largest number of operations? As we observed in our
trace, the value 24 resulted in a lot of comparisons and move
operations. We continued to check each value and move all the
values greater than 24 one space to the right. In contrast, value 45
was nearly in the right place. For 45, we only “moved” it back into
the same place from which it came. Take a moment to think about
what these observations might mean for our worst-case and best-
case analysis.

Let us think about the case of 24 first. Why did 24 require so
many operations? Well, it was smaller than all the values that came
before it. In a sense, it was “maximally out of place.” Suppose the
value 23 came next in the endSorted position. This would require
us to move all the other values, including 24, over again to make
room for 23 in the first position. What if 22 came next? There may
be a pattern developing. We considered some values followed by
24, 23, then 22. These values would lead to a lot of work each time.
The original starting order of our previous array was 43, 27, 45, 24,
35, 47, 22, 48. For Insertion Sort, what would be the worst starting
order? Or put another way, which starting order would lead to the
absolute highest number of comparison and move operations? Take
a moment to think about it.

When sorting in increasing order, the worst scenario or
Insertion Sort would be an array where all values are in decreasing
order. This means that every value being considered for placement

Sorting | 83

is “maximally out of place.” Consider the case where our values were
ordered as 48, 47, 45, 43, 35, 27, 24, 22, and we needed to place them
in increasing order. The positions of 48 and 47 must be swapped.
Next, 45 must move to position 0. Next, 43 moves to position 0
resulting in 3 comparisons and 3 move (or assignment) operations.
Then, 35 results in 4 comparisons and 4 move operations to take its
place at the front. This process continues for smaller and smaller
values that need to be moved all the way to the front of the array.

From this pattern, we see that for this worst-case scenario,
the first value considered takes 1 comparison and 1 move operation.
The second value requires 2 comparisons and 2 moves. The third
takes 3 comparisons and 3 moves, and so on. As the total runtime is
the sum of the operations for all the values, we see that a function
for the worst-case runtime would look like the following equation.
The 2 accounts for an equal number of comparisons and moves:

T(n)=2 * 1 + 2 * 2 + 2 * 3 + 2 * 4 + … 2 * (n − 1).

This can be rewritten as

T(n)=2 * (1 + 2 + 3 + 4 … n − 1).

We see that this function has a growing sum as we saw
with Selection Sort. We can substitute this value back into the time
equation, T(n):

84 | Sorting

T(n)=2 * {(½)[n*(n − 1)]}.

The 2 and ½ cancel, leaving

T(n)=n*(n − 1).

Viewing this as a polynomial, we have

T(n)=n2 − n.

This means that our worst-case time complexity is O(n2).
This is the same as Selection Sort’s worst-case time complexity.

Best-Case Time Complexity Analysis of Insertion
Sort and Selection Sort

Now that we have seen the worst-case scenario, try to imagine
the best-case scenario. What feature would that best-case problem
instance have for Insertion Sort? In our example trace, we noticed
that the value 45 saw 1 comparison and 1 “move,” which simply set 45
back in the same place. The key observation is that 45 was already
in its correct position relative to the other values in the sorted

Sorting | 85

portion of the array. Specifically, 45 is larger than the other values in
the sorted portion, meaning it is “already sorted.” Suppose we next
considered 46. Well, 46 would be larger than 45, which is already
larger than the other previous values. This means 46 is already
sorted as well, resulting in 1 additional comparison and 1 additional
move operation. We now know that the best-case scenario for
Insertion Sort is a correctly sorted array.

For our example array, this would be 22, 24, 27, 35, 43, 45, 47,
48. Think about how Insertion Sort would proceed with this array.
We first consider 24 with respect to 22. This gives 1 comparison and
1 move operation. Next, we consider 27, adding 1 comparison and 1
move, and so on until we reach 48 at the end of the array. Following
this pattern, 2 operations are needed for each of the n − 1 values to
the right of 22 in the array. Therefore, we have 2*(n − 1) operations
leading to a bound of O(n) operations for the best-case scenario.
This means that when the array is already sorted, Insertion Sort
will execute in O(n) time. This could be a significant cost savings
compared to the O(n2) case.

The fact that Insertion Sort has a best-case time
complexity of O(n) and a worst-case time complexity of O(n2) may
be hard to interpret. To better understand these features, let us
consider the best- and worst-case time complexity of Selection
Sort. Suppose that we attempt to sort an array with Selection Sort,
and that array is already sorted in increasing order. Selection Sort
will begin by finding the minimum value in the array and placing it
in the first position. The first value is already in its correct position,
but Selection Sort still performs n comparisons and 1 move. The
next value is considered, and n − 1 comparisons are executed. This
progression leads to another variation of the arithmetic series (n
+ n − 1 + n − 2 …) leading to O(n2) time complexity. Suppose now
that we have the opposite scenario, where the array is sorted in
descending order. Selection Sort performs the same. It searches for
the minimum and moves it to the first position. Then it searches
for the second smallest value, moves it to position 1, and continues
with the remaining values. This again leads to O(n2) time complexity.

86 | Sorting

We have now considered the already-sorted array and the reverse-
order-sorted array, and both cases led to O(n2) time complexity.

Regardless of the orderings of the input array, Selection
Sort always takes O(n2) operations. Depending on the input
configuration, Insertion Sort may take O(n2) operations, but in other
cases, the time complexity may be closer to O(n). This gives
Insertion Sort a definite advantage over Selection Sort in terms of
time complexity. You may rightly ask, “How big is this advantage?”
Constant factors can be large, after all. The answer is “It depends.”
We may wish to ask, “How likely are we to encounter our best-case
scenario?” This question may only be answered by making some
assumptions about how the algorithms will be used or assumptions
about the types of value sets that we will be sorting. Is it likely we
will encounter data sets that are nearly sorted? Would it be more
likely that the values are in a roughly random order? The answers
to these questions will be highly context-dependent. For now, we
will only highlight that Insertion Sort has a better best-case time
complexity bound than Selection Sort.

Merge Sort

Now we have seen two interesting sorting algorithms for arrays,
and we have had a fair amount of experience analyzing the time
and space complexity of these algorithms. Both Selection Sort and
Insertion Sort have a worst-case time complexity bound of O(n2). In
computer science terms, we would say that they are both equivalent
in terms of runtime. “But wait! You said Insertion Sort was faster!”
Yes, Insertion Sort may occasionally perform better, but it turns
out that even the average-case runtime is O(n2). In general, their
growth functions are both bounded by O(n2). This fact means that
when n is large enough, any minor differences between their actual
runtime efficiency will become negligible with respect to the overall
time: Graduate Student: “This algorithm is more efficient! It will

Sorting | 87

only take 98 years to complete compared to the 99 years of the
other algorithm.” Professor: “I would like to have the problem solved
before I pass away. Preferably, before I retire.” This is an extreme
example. Often, minor improvements to an algorithm can make a
very real impact, especially on real-time systems with small input
sizes. On the other hand, reducing the runtime bound by more than
a constant factor can have a drastic impact on performance. In
this section, we will present Merge Sort, an algorithm that greatly
improves on the runtime efficiency of Insertion Sort and Selection
Sort.

Description of Merge Sort

Merge Sort uses a recursive strategy to sort a collection of numbers.
In simple terms, the algorithm takes two already sorted lists and
merges them into one final sorted list. The general strategy of
dividing the work into subproblems is sometimes called “divide and
conquer.” The algorithm can be specified with a brief description.

To Merge Sort a list, do the following:

• Recursively Merge Sort the first half of the list.
• Recursively Merge Sort the second half of the list.
• Merge the two sorted halves of the list into one list.

Before we investigate the implementation, let us visualize
how this might work with our previous array. Suppose we have the
following values:

88 | Sorting

Figure 3.20

Merge Sort would first split the array in half and then make
a recursive call on the two subarrays. This would in turn split
repeatedly until each array is only a single element. For this
example, the process would look something like the image below.

Figure 3.21

Now the algorithm would begin merging each of the
individual values into sets of two, then two sets of two into a sorted
list of four, and so on. This is illustrated below:

Sorting | 89

Figure 3.22

The result would be a correctly sorted list. This simple
strategy leads to an efficient algorithm, as we will see.

There is one part of the process we have not discussed: the
merge process. Let us explore merging at one of the intermediate
levels. The example below shows one of the merge steps. The top
portion shows conceptually what happens. The bottom portion
shows that specific items are moved into specific positions in the
new sorted array.

90 | Sorting

Figure 3.23

To implement Merge Sort, the merge function will be an
important part of the algorithm. Let us explore merging with
another diagram that more closely resembles our eventual design.
At this intermediate step, the data of interest is part of a larger array.
These data are composed of two sorted sublists. There are some
specific indexes we want to know about. Specifically, they are the
start of the first sublist, the end of the first sublist, and the final
position of the data representing the end of the data to be merged.

Sorting | 91

Figure 3.24

Our strategy for merging will be to copy the two sublist
sets of values into two temporary storage arrays and then merge
them back into the original array. This process is illustrated below:

Figure 3.25

Once the merge process completes, the temporary storage
may be freed. This requires some temporary memory usage, but
this will be returned to the system once the algorithm completes.

92 | Sorting

Using this approach simplifies the code and makes sure the data are
sorted and put back into the original array.

These are the key ideas behind Merge Sort. Now we will
examine the implementation.

Merge Sort Implementation

The implementation of algorithms can be tricky. Again, we will use
the approach of creating several functions that work together to
solve our problem. This approach has several advantages. Mainly,
we want to reduce our cognitive load so that thinking about the
algorithm becomes easier. We will make fewer errors if we focus on
specific components of the implementation in sequence rather than
trying to coordinate multiple different ideas in our minds.

We will start with writing the merge function. This function
will accept the array and three index values (start of left half, end
of left half, and end of data). Notice that for this merge
implementation, we use end to refer to the last valid position of
the subarray. This use of end is a little different from how we have
used it before. Before, we had end specify a value beyond the array
(one position beyond the last valid index). Here end will specify the
last valid index. The merge function proceeds by copying the data
into temporary storage arrays and then merging them back into the
original array.

For the copy step, we extend the storage arrays to hold one
extra value. This value is known as a sentinel. The sentinel will be
a special value representing the highest possible value (or lowest
for other orderings). Most programming languages support this as
either a MAX or an Infinity construct. Any ordinary value compared
to MAX or Infinity will be less than the sentinel (or greater than
for MIN or −Infinity with other orderings). In our code, we will use
MAX to represent our sentinel construct.

The merge function is presented below:

Sorting | 93

This function will take a split segment of an array, identified
by indexes, and merge the values of the left and right halves in order.
This will place their values into their proper sorted order in the
original array. Merge is the most complex function that we will write
for Merge Sort. This function is complex in a general sense because
it relies on the careful manipulation of indexes. This is a very error-
prone process that leads to many off-by-one errors. If you forget
to add 1 or subtract 1 in a specific place, your algorithm may be
completely broken. One advantage of a modular design is that these
functions can be tested independently. At this time, we may wish to
create some tests for the merge function. This is a good practice,
but it is outside of the scope of this text. You are encouraged to
write a test of your newly created function with a simple example
such as 27, 43, 24, 45 from the diagrams above.

Now that the merge implementation is complete, we will
move on to writing the recursive function that will complete Merge
Sort. Here we will use the mathematical “floor” function. This is
equivalent to integer division in C-like languages or truncation in
languages with fixed-size integers.

94 | Sorting

From this implementation, we see that the recursion
continues while the start index is less than the end index. Recursion
ends once the start and end index have the same value. In other
words, our process will continue splitting and splitting the data until
it reaches a level of a single-array element. At this point, recursion
ends, a single value is sorted by default, and the merging process
can begin. This process continues until the final two halves are
sorted and merged into their new positions within the starting
array, completing the algorithm.

Once more, we have a recursive algorithm requiring some
starting values. In cases like these, we should use a wrapper to
provide a more user-friendly interface. A wrapper can be
constructed as follows:

Merge Sort Complexity

At the beginning of the Merge Sort section, we stated that Merge
Sort is indeed faster than Selection Sort and Insertion Sort in terms
of worst-case runtime complexity. We will look at how this is
possible.

We may begin by trying to figure out the complexity of the
merge function. Suppose we have a stretch of n values that need to
be merged. They are copied into two storage arrays of size roughly
n/2 and then merged back into the array. We could reason that it

Sorting | 95

takes n/2 individual copies for each half of the array. Then another
n copies back into the original array. This gives n/2 + n/2 + n total
copy operations, giving 2n. This would be O(n) or linear time.

Now that we know merging is O(n) we can start to think
about Merge Sort. Thinking about the top-level case at the start of
the algorithm, we can set up a function for the time cost of Merge
Sort:

T(n)=2*T(n/2) + c*n.

This captures the cost of Merge Sorting the two halves of the array
and the merge cost, which we determined would be O(n) or n times
some constant c. Substituting this equation into itself for T(n/2)
gives the following:

T(n)=2*[2 * T(n/4) + c*n/2] + c*n.

Cleaning things up a little gives the following sequence:

T(n)=2*[2 * T(n/4) + c*(n/2)] + c*n

=4 * T(n/4) + 2*c*(n/2) + c*n

=4 * T(n/4) + c*n + c*n.

As this pattern continues, we will get more and more c*n

96 | Sorting

terms. Instead of continuing the recurrence, we will instead draw a
diagram to show how many of these we can expect.

Figure 3.26

Expanding the cost of sorting the two halves, we get the
next diagram.

Sorting | 97

Figure 3.27

As the process continues, the c*n terms start to add up.

Figure 3.28

To determine the complexity though, we need to know how
many of these terms to expect. The number of c*n terms is related
to the depth of the recursion. We need to know how many times
to split the array before arriving at the case where the start index

98 | Sorting

is equal to the end index. In other words, how many times can we
split before we reach the single-element level of the array? We just
need to solve 1 = n/2k for the value k. Setting k to log2 n solves this
equation. Therefore, we have log2 n occurrences of the c*n terms.
If we assume that n is a power of 2, the overall time cost gives us
T(n) = n*T(1) + log2 n * c * n. For T(1), our wrapper function would
make one check and return. We can safely assume that T(1) = c, a
small constant. We could then write it as T(n) = n*c + log2 n * c *
n, or c*(n * log2 n + n). In Big-O terms, we arrive at O(n log2 n).
A consequence of Big-O is that constants are ignored. Logs in any
base can be related to each other by a constant factor (log2(n) =
log3(n)/log3(2), and note that 1/log3(2) is a constant), so the base
is usually dropped in computer science discussions. We can now
state the proper worst-case runtime complexity of Merge Sort is
O(n log n). It may not be obvious, but this improvement leads to a
fundamental improvement over O(n2). For example, at n = 100, n2 =
10000, but n*log2 n is approximately 665, which is less than a tenth
of the n2 value. Merge Sort guarantees a runtime bounded by O(n
log n), as the best case and worst case are equivalent (much like
Selection Sort).

For space complexity, we will need at least enough memory
as we have elements of the array. So we need at least O(n) space.
Remember that we also needed some temporary storage for copying
the subarrays before merging them again. We need the most
memory for the case near the end of the algorithm. At this stage, we
have two n/2-sized storage arrays in addition to the original array.
This leads us to space for the original n values and another n value’s
worth of storage for the temporary values. That gives 2*n near the
end of the calculation, so overall memory usage seems to be O(n).
This is not the whole story though.

Since we are using a recursive algorithm, we may also
reason that we need stack space to store the sequence of calls.
Each stack frame does not need to hold a copy of the array. Usually,
arrays are treated as references. This means that each stack frame is
likely small, containing a link to the array’s location and the indexes

Sorting | 99

needed to keep our place in the array. This means that each
recursive call will take up a constant amount of memory. The other
question we need to address is “How large will the stack of frames
grow during execution?” We can expect as many recursive calls as
the depth of the treelike structure in the diagrams above. We know
now that that depth is approximately log n. Now we have all the
pieces to think about the overall space complexity of Merge Sort.

First, we need n values for the original array. Next, we will
need another n value for storage in the worst case (near the end of
the algorithm). Finally, we can expect the stack to take up around log
n stack frames. This gives the following formula using c1 and c2 to
account for a small number of extra variables associated with each
category (indexes for the temporary arrays, start and end indexes
for recursive calls, etc.): S(n) = n + c1*n + c2*log n. This leads to O(2*n
+ log n), which simplifies to just O(n) in Big-O notation. The overall
space complexity of Merge Sort is O(n).

Auxiliary Space and In-Place Sorting

We have now discussed the worst-case space and time complexity
of Merge Sort, but an important aspect of Merge Sort still needs
to be addressed. All the sorting algorithms we have discussed so
far have worst-case space complexity bounds of O(n), meaning they
require at most a constant multiple of the size of their input data. As
we should know by now, constant values can be large and do make
a difference in real-world computing. Another type of memory
analysis is useful in practice. This is the issue of auxiliary memory.

It is understood that for sorting we need enough memory
to store the input. This means that no sorting algorithm could
require less memory than is needed for that storage. A lower bound
smaller than n is not possible for sorting. The idea behind auxiliary
memory analysis is to remove the implicit storage of the input data

100 | Sorting

from the equation and think about how much “extra” memory is
needed.

Let us try to think about auxiliary storage for Selection
Sort. We said that Selection Sort only uses the memory needed for
the array plus a few extra variables. Removing the array storage, we
are left with the “few extra variables” part. It means that a constant
number of “auxiliary” variables are needed, leading to an auxiliary
space cost of O(1) or constant auxiliary memory usage. Insertion
Sort falls into the same category, needing only a few index variables
in addition to storage used for the array itself. Insertion Sort has an
auxiliary memory cost of O(1).

An algorithm of this kind that requires only a constant
amount of extra memory is called an “in-place” algorithm. The
algorithm keeps array data as a whole within its original place in
memory (even if specific values are rearranged). Historically, this
was a very important feature of algorithms when memory was
expensive. Both Selection Sort and Insertion Sort are in-place
sorting algorithms.

Coming back to Merge Sort, we can roughly estimate the
memory usage with this function:

S(n) = n + c1*n + c2*log n.

Now we remove n for the storage of the array to think about the
auxiliary memory. That leaves us with c1*n + c2*log n. This means
our auxiliary memory usage is bounded by O(n + log n) or just
O(n). This means that Merge Sort potentially needs quite a bit of
extra memory, and it grows proportionally to the size of the input.
This represents the major drawback of Merge Sort. On modern
computers, which have sizable memory, the extra memory cost is

Sorting | 101

usually worth the speed up, although the only way to know for sure
is to test it on your machine.

Quick Sort

The next sorting algorithm we will consider is called Quick Sort.
Quick Sort represents an interesting algorithm whose worst-case
time complexity is O(n2). You may be thinking, “n2? We already
have an O(n log n) algorithm. I’ll pass, thank you.” Well, hold on.
In practice, Quick Sort performs as well as Merge Sort for most
cases, but it does much better in terms of auxiliary memory. Let us
examine the Quick Sort algorithm and then discuss its complexity.
This will lead to a discussion of average-case complexity.

Description of Quick Sort

The general idea of Quick Sort is to choose a pivot key value and
move any array element less than the pivot to the left side of the
array (for increasing or ascending order). Similarly, any value greater
than the pivot should move to the right. Now on either side of the
pivot, there are two smaller unsorted portions of the array. This
might look something like this: [all numbers less than pivot, the
pivot value, all numbers greater than pivot]. Now the pivot is in
its correct place, and the higher and lower values have all moved
closer to their final positions. The next step recursively sorts these
two portions of the array in place. The process of moving values to
the left and right of a pivot is called “partitioning” in this context.
There are many variations on Quick Sort, and many of them focus
on clever ways to choose the pivot. We will focus on a simple version
to make the runtime complexity easier to understand.

102 | Sorting

Quick Sort Implementation

To implement Quick Sort, we will use a few helper functions. We
have already seen the first helper function, exchange (above). Next,
we will write a partition function that does the job of moving the
values of the array on either side of the pivot. Here start is the first
and end is the last valid index in the array. For example, end would
be n − 1 (rather than n) when partitioning the whole array. This will
be important as we recursively sort each subset of values with Quick
Sort.

This partition function does the bulk of the work for the
algorithm. First, the pivot is assumed to be the first value in the
array. The algorithm then places any value less than the pivot on
the left of the eventual position of the pivot value. This goal is
accomplished using the smallIndex value that holds the position
of the last value that was smaller than the pivot. When the loop
advances to a position that holds a value smaller than the pivot, the
algorithm exchanges the smaller value with the one to the right of
smallIndex (the rightmost value considered so far that is smaller
than the pivot). Finally, the algorithm exchanges the first value, the
pivot, with the small value at smallIndex to put the pivot in its final
position, and smallIndex is returned. The final return provides the
pivot value’s index for the recursive process that we will examine
next.

Sorting | 103

Using recursion, the remainder of the algorithm is simple
to implement. We will recursively sort by first partitioning the
values between start and end. By calling partition, we are
guaranteed to have the pivot in its correct position in the array.
Next, we recursively sort all the remaining values to the left and
right of the pivot location. This completes the algorithm, but we may
wish to create a nice wrapper for this function to avoid so much
index passing.

Quick Sort Complexity

The complexity analysis of Quick Sort is interesting. We know that
Quick Sort is a recursive algorithm, so we may reason that its
complexity is like Merge Sort. One advantage of Quick Sort is that it
is “in place.” There are no copies of the data array, so there should
not be any need for extra or “auxiliary” space. Remember though,
we do need stack space to handle all those recursive calls and
their local index variables. The critical question now is “How many
recursive calls can we expect?” This question will determine our
runtime complexity and reveal some interesting features of Quick
Sort and Big-O analysis in general.

To better understand how this process may work, let’s look
at an example using the same array we used with Merge Sort.

104 | Sorting

Figure 3.29

Quick Sort would begin by calling partition and setting the
pivotValue to 43. The smallIndex would be set to 0. The loop would
begin executing with index at 1. Since the value at index (27) is less
than the pivot (43), the algorithm would increment smallIndex and
exchange it with the value at index. In this case, nothing happens,
as the indexes are the same. This is OK. Trying to optimize the small
issues would substantially complicate the code. We are striving for
understanding right now.

Sorting | 105

Figure 3.30

With smallIndex updated, execution continues through the
loop examining new values. Since 45 is greater than the pivot, the
loop simply continues and updates index only.

Figure 3.31

106 | Sorting

The next value, 24, is smaller than our pivot. This means the
algorithm updates smallIndex and exchange values.

Figure 3.32

Now the array is in the following state just before the loop
finishes. Next, the index will be incremented, and position 4 will be
examined. Notice how smallIndex always points to the rightmost
value smaller than the pivot.

Sorting | 107

Figure 3.33

The partition function will continue this process until
index reaches the end of the array. Once the loop has ended, the
pivot value at the start position will be exchanged with the value at
the smallIndex position.

108 | Sorting

Figure 3.34

Now the partition function is complete, and the next step
in the algorithm is to recursively Quick Sort the left and right
partitions. In the figure below, we use startL and endL to mark the
start and end of the left array half (and similarly for the right half):

Sorting | 109

Figure 3.35

Now the process of partitioning would begin again for both
sides of the array. You can envision this process growing like a tree
with each new partition being broken down into two smaller parts.

110 | Sorting

Figure 3.36

Let’s assume that each recursive call to partition breaks the
array into roughly equal-size parts. Then the array will be roughly
split in half each time, and the tree will appear to be balanced.
If this is the case, we can now think about the time complexity
of this algorithm. The partition function must visit every value in
the array to put it on the correct side of the pivot. This means
that partition is O(n). Once the array is split, partition runs on two
smaller arrays each of size n/2 as we assumed. For simplicity, we
will ignore subtracting 1 for the pivot. This will not change the Big-
O complexity. This splitting means that the second level of the tree
needs to process two calls to partition with inputs of n/2, so 2(n/
2) or n. This reasoning is identical to our analysis of Merge Sort. The
time complexity is then determined by the height of this tree. In our
analysis of Merge Sort, we determined that a balanced tree has a
height of log n. This leads to a runtime complexity of O(n log n).

So if partitioning roughly splits the array in half every time,
the time complexity of Quick Sort is O(n log n). That is a big “if”
though. Even in this example, we can see that this is not always
the case. We said that for simplicity we would just choose the very
first value as our pivot. What happens on the very next recursive
iteration of Quick Sort for our example?

For the left recursive call, 22 is chosen as the pivot, but it

Sorting | 111

is the smallest value in its partition. This leads to an uneven split.
When Quick Sort runs recursively on these parts, the left side is
split unevenly, but the right side is split evenly in half.

Figure 3.37

The possibility of uneven splits hints that more work might
be required. This calls into question our optimistic assumption that
the algorithms will split the array evenly every time. This shows that
things could get worse. But how bad could it get? Let’s think about
the worst-case scenario. We saw that when 22 was the smallest
value, there was no left side of the split. What if the values were 22,
24, 27, 35?

112 | Sorting

Figure 3.38

This shows an array that is already sorted. Let’s now
assume that we have a list that is already sorted, and every time
a pivot is chosen, it chooses the smallest value. This means that
the partitions that are created are an empty left subset and a right
subset that contains all the remaining values minus the pivot.
Recursion runs Quick Sort on the remaining n − 1 values. This
process would produce a very uneven tree. First, we run partition
on n elements, then n − 1 elements, then n − 2, and so on.

Figure 3.39

This process produces a progression that looks like our
analysis of Insertion Sort but in reverse. We get n + n − 1 + n − 2 + …
3 + 2. This leads to a complexity of O(n2). This worst-case runtime
complexity is O(n2). You may be thinking that “quick” is not a great
name for an algorithm with a quadratic runtime. Well, this is not the
full story either. In practice, Quick Sort is very fast. It is comparable

Sorting | 113

to Merge Sort in many real-world settings, and it has the advantage
of being an “in-place” sorting algorithm. Let’s next explore some of
these ideas and try to understand why Quick Sort is a great and
highly used algorithm in practice even with a worst-case complexity
of O(n2).

Average-Case Time Complexity

We now know that bad choices of the pivot can lead to poor
performance. Consider the example Quick Sort execution above.
The first pivot of 43 was near the middle, but 22 was a bad choice in
the second iteration. The choice of 47 on the right side of the second
iteration was a good choice. Let us assume that the values to be
sorted are randomly distributed. This means that the probability of
choosing the worst pivot should be 1/n. The probability of choosing
the worst pivot twice in a row would be 1/n * 1/(n − 1). This
probability is shrinking rapidly.

Here is another way to think about it. The idea of
repeatedly choosing a bad pivot by chance is the same as
encountering an already sorted array by chance. So the already
sorted order is one ordering out of all possible orderings. How many
possible orderings exist? Well, in our example we have 8 values. We
can choose any of the 8 as the first value. Once the first value is
chosen, we can choose any of the remaining 7 values for the second
value. This means that for the first two values, we already have 8*7
choices. Continuing this process, we get 8*7*6*5*4*3*2*1. There is a
special mathematical function for this called factorial. We represent
factorial with an exclamation point (!). So we say that there are 8!
or 8 factorial possible orderings for our 8 values. That is a total of
40,320 possible orderings with just 8 values! That means that the
probability of encountering by chance an already sorted list of 8
values is 1/8! or 1/40,320, which is 0.00002480158. Now imagine the
perfectly reasonable task of sorting 100 values. The value of 100! is

114 | Sorting

greater than the estimated number of atoms in the universe! This
makes the probability of paying the high cost of O(n2) extremely
unlikely for even relatively small arrays.

To think about the average-case complexity, we need to
consider the complexity across all cases. We could reason that
making the absolute best choice for a pivot is just as unlikely as
making the absolute worst choice. This means that the vast majority
of cases will be somewhere in the middle. Researchers have studied
Quick Sort and determined that the average complexity is O(n log n).
We won’t try to formally prove the average case, but we will provide
some intuition for why this might be. Sequences of bad choices for
a pivot are unlikely. When a pivot is chosen that partitions the array
unevenly, one part is smaller than the other. The smaller subset will
then terminate more quickly during recursion. The larger part has
another chance to choose a decent pivot, moving closer to the case
of a balanced partition.

As we mentioned, the choice of pivot can further improve
the performance of Quick Sort by working harder to avoid choosing
a bad pivot value. Some example extensions are to choose the pivot
randomly or to select 3 values from the list and choose the median.
These can offer some improvement over choosing the first element
as the pivot. Other variations switch to Insertion Sort once the
size of the partitions becomes sufficiently small, taking advantage
of the fact that small data sets may often be almost sorted, and
small partitions can take advantage of CPU cache efficiency. These
modifications can help improve the practical measured runtime but
do not change the overall Big-O complexity.

Quick Sort Space Complexity

We should also discuss the space complexity for Quick Sort. Quick
Sort is an “in-place” sorting algorithm. So we do not require any
extra copies of the data. The tricky part about considering the

Sorting | 115

space complexity of Quick Sort is recognizing that it is a recursive
algorithm and therefore requires stack space. As with the worst-
case time complexity, it is possible that recursive calls to Quick
Sort will require stack space proportional to n. This leads to O(n)
elements stored in the array and O(n) extra data stored in the stack
frames. In the worst case, we have O(n + n) total space, which is
just O(n). Of the total space, we need O(n) auxiliary space for stack
data during the recursive execution of the algorithm. This scenario
is unlikely though. The average case leads to O(n + log n) space if our
recursion only reaches a depth of log n rather than n. This is still just
O(n) space complexity, but the auxiliary space is now only O(log n).

Exercises

1. Create a set of tools to generate random arrays of
values for different sizes in your language of choice.
These can be used to test your sorting algorithms. Some
useful functions and capabilities are provided below.

a. Include functions to generate random arrays
of a given size up to 10,000.

b. Include functions to print the first 5 numbers
or the entire array.

c. Provide parameters to control the range of
values.

d. Provide functions to generate already sorted
or reverse sorted arrays.

e. Explore your programming language’s time
functionality to be able to measure sorting
performance in terms of the time taken to complete

116 | Sorting

the sort.
f. Consider creating functions to repeatedly run

an algorithm and record the average sorting time.

2
. Implement Selection Sort and Insertion Sort in

your language of choice. Using randomly generated array
data, try to find the number of values where Insertion
Sort begins to improve on Selection Sort. Remember to
repeat the sorting several times to calculate an average
time.

3
. Implement Merge Sort and repeat the analysis for

Merge Sort and Insertion Sort. For what n does Merge
Sort begin to substantially improve on Insertion Sort? Or
does it seem to improve at all?

4
. Implement Quick Sort in your language of choice.

Next, determine the time for sorting 100 values that are
already sorted using Quick Sort (complete the 1.d
exercise). Next, randomly generate 1,000 arrays of size
100 and sort them while calculating the runtime. Are any
as slow as Quick Sort on the sorted array? If so, how
many? If not, what is the closest time?

References

Sorting | 117

JaJa, Joseph. “A Perspective on Quicksort.” Computing
in Science & Engineering 2, no. 1 (2000): 43–49.

118 | Sorting

4. Search

Learning Objectives

After reading this chapter you will…

• understand how to find specific data within an
array by searching.

• be able to implement a search algorithm that runs
in O(n) time.

• be able to implement Binary Search for arrays that
will run in O(log n) time.

Introduction

The problem of finding something is an important task. Many of
us will spend countless hours in our lives looking for our keys or
phone or trying to find the best tomatoes at the grocery store. In
computer science, finding a specific record in a database can be an
important task. Another common use for searching is to check if a
value already exists in a collection. This function is important for
implementing “sets” or collections of unique elements.

With the search problem, we start to think a little more
about our data structures and what a solution means in the context
of the data structure used. Suppose, for example, that we have an
array of the following values using 0-based indexing.

Search | 119

Figure 4.1

What does it mean to find the value 22? Should we return
True if 22 is in the array? Should we return the index 6 instead?
What should we do if 22 is not found? These questions will depend
on how the search function is used in its broader context.

Let us describe a search problem in more detail. First, we
are looking for a specific value or a record identified by a specific
code in our data set. We will call the value for which we are
searching the “key.” The key is a data value used to find a match in
the data structure. For a simple array, the key is just the value itself.
For example, 22 could be the key for which we are looking. Further,
we may specify that our algorithms should return True if the key is
found in our data structure and False if we fail to find the key. With
our previous array, a call to search(array, 22) should return True, but
a call to search(array, 12) should return False.

We now have an idea of what our search function should
do, but we do not yet have an idea of how it should do it. Can you
think of a way to implement search? Take a few minutes to think
about it.

I am sure most computer science students would come to
the same idea. Examine all the values of the array one by one, which
is also known as iterating. If one of the values matches the key,
return True. If we get to the end without finding the key, return
False. This is a simple idea that will definitely work. This is the
strategy behind Linear Search, which we will examine in the next
section.

120 | Search

Linear Search

Linear Search may be the simplest searching algorithm. It uses an
approach similar to the way a human might look for something in
a systematic way—that is, by examining everything one by one. If
your mother puts your clothes away and you are trying to find your
favorite shirt, you might try every drawer in your room until it is
found. Linear Search is an exhaustive search that will eventually
examine every value in an array one by one. You can remember the
name linear by thinking of it as going one by one in a line through
all the values. Linear is also a clue that the runtime is O(n) because
in the worst case, we must examine all n items in the array.

Let us examine one implementation of Linear Search.

Linear Search Complexity

As always, we will be interested in assessing the time and space
scaling behavior of our algorithm. This means we want to know how
its resource demand grows with larger inputs.

For space complexity, Linear Search needs storage for the
array and a few other variables (the index of our for-loop, for
example). This leads to a bound of O(n) space complexity.

For time complexity, we want to think about the best-case
and worst-case scenarios. Suppose we go to search for the key, 22,
and as luck would have it, 22 is the first value in the array! This
leads to only a small number of operations and only 1 comparison
operation. As you may have guessed, the best-case scenario leads

Search | 121

to an O(1) or constant number of operations. In algorithm analysis
(as in stock market investing), luck is not a strategy. We still need
to consider the worst-case behavior of the algorithm, as this
characteristic makes a better tool for evaluating one algorithm
against another. In general, we cannot choose the problems we
encounter, and our methods should be robust against all types of
problems that are thrown at us. The worst case for Linear Search
would be a problem where our key is found at the end of the array
or isn’t found at all. For inputs with this feature, our time complexity
bound is O(n).

Linear Search with Objects

Suppose we designed our Linear Search function to return the
actual value of the key. For the array [43, 27, 45, 24, 35, 47, 22,
48], search(array, 22) would return 22. An important design
consideration is this: What should it return if the value is not found
in the array? Some approaches would return −1, but this would limit
our search values to positive integers. What is needed is some type
of sentinel value. This is another special value, unlike the ones we
are storing. Another approach could be to throw an exception if the
value is not found. There are many ways to address this problem,
and this issue is an important one when storing more complex data
types than just integers.

Suppose we are working on a database of contact
information for a student club. We would design a class or data type
specification for the student records that we need to store in our
data structures. Our Student class might look something like the
code below:

122 | Search

Now think about storing an array of Student object
instances in memory. The diagram below is one way to visualize this
data structure:

Figure 4.2

Now suppose we want to search through our database for
the student whose member_id is 22. If our student is in the array,
we could just return the Student object. If there is no student with
22 as their member_id, we run into the issues we mentioned above.
All these issues create some difficulties in designing the interface
of our search algorithm. A simple solution that could sidestep the
problem would be to return either the index of the value or −1
to indicate that the value was not found. For many programming
languages, −1 is an invalid array index.

Let us try our implementation of Linear Search one more
time using the indexed approach and assume that our array holds a
set of Student objects.

Search | 123

An example use of this implementation is given below. The
programmer could access a student object safely (only if it was
found) using the array index after the array has been searched.

A slight variation on this idea comes from a slightly altered
database. Rather than storing all our student records in continuous
blocks of memory, we may have an array of references to our
records. This would lead to a structure like that depicted in the
following image:

124 | Search

Figure 4.3

For this style of storage, our array holds references to
instances rather than having the instances of objects stored in the
array. Holding references rather than objects comes with some
advantages in flexibility, but working with references puts more
responsibility for memory management in the hands of the
programmer. For the present search problem, working with
references gives a nice solution to the “not found” problem.
Specifically, we can return a null reference when our search fails to
find an object with the matching search key.

Suppose now that our database of students is an array of
references to objects. Our implementation would look like this:

Search | 125

Using this implementation as before may look something
like this:

These examples will help you appreciate how simple design
questions can lead to difficult issues when implementing your
algorithm. Even without thinking about performance (in terms of
Big-O complexity), design issues can impact the usability and
usefulness of real-world software systems. Answering these design
questions will inevitably impose constraints on how your algorithm
can and will be used to solve problems in real-world contexts. It is
important to carefully consider these questions and to understand
how to think about answering them.

Binary Search

We have seen a method for searching for a particular item in an
array that runs in O(n) time. Now we examine a classic algorithm to
improve on this search time. The Binary Search algorithm improves
on the runtime of Linear Search, but it requires one important
stipulation. For Binary Search to work, the array items must be in
a sorted order. This is an important requirement that is not cost-
free. Remember from the previous chapter that the most efficient
general-purpose sorting algorithms run in O(n log n) time. So you
may ask, “Is Binary Search worth the trouble?” The answer is yes!
Well, it depends, but generally speaking, yes! We will return to the
analysis of Binary Search after we have described the algorithm.

The logic of Binary Search is related to the strategy of
playing a number-guessing game. You may have played a version of

126 | Search

this game as a kid. The first player chooses a number between 1 and
100, and the second player tries to guess the number. The guesser
guesses a number, and the chooser reports one of the following
three scenarios:

1. The guesser guessed the chooser’s number and wins the
game.

2. The chooser’s number is higher than the guess, and the
chooser replies, “My number is higher.”

3. The chooser’s number is lower than the guess, and the
chooser replies, “My number is lower.”

An example dialogue for this game might go like this:
Chooser: [chooses 37 in secret] “I have my number.”
Guesser: “Is your number 78?”
Chooser: “My number is lower.”
Guesser: “Is your number 30?”
Chooser: “My number is higher.”
Guesser: “Is your number 47?”
Chooser: “My number is lower.”
Guesser: “Is your number 35?”
Chooser: “My number is higher.”
Guesser: “Is your number 40?”
Chooser: “My number is lower.”
Guesser: “Is your number 38?”
Chooser: “My number is lower.”
Guesser: “Is your number 37?”
Chooser: “You guessed my number, 37!”

With each guess, the guesser narrows down the possible
range for the chooser’s number. In this case, it took 7 guesses, but if
the guesser is truly guessing at random, it could take much longer.
Where does Binary Search come in? Well, take a few moments to
think about a better strategy for finding the right number. When the
guesser guesses 78 and the chooser responds with “lower,” all values
from 78 to 100 can be eliminated as possibilities. What strategy

Search | 127

would maximize the number that we eliminate each time? Maybe
you have thought of the strategy by now.

The optimal strategy would be to start with 50, which
eliminates half of the numbers with one guess. If the chooser
responds “lower,” the next guess should be 25, which again halves
the number of possible guesses. This process continues to split
the remaining values in half each time. This is the principle behind
Binary Search, and the “binary” name refers to the binary split of the
candidate values. This strategy works because the numbers from 1
to 100 have a natural order.

A precondition for Binary Search is that the elements of the
array are sorted. The sorting allows each comparison in the array
to be oriented, and it indicates in which direction to continue the
search. Each check adds some new information for our algorithm
and allows the calculation to proceed efficiently.

We will present an illustration below of an example
execution of the algorithm. Suppose we are searching for the key 27
in the sorted array below:

Figure 4.4

We will keep track of three index variables to track the low
and high ends of the range as well as a “mid” or middle variable that
will track the middle value in the range. The mid variable will be the
one currently considered for the key. In this case, 35 is too high, so

128 | Search

we will update the high end of the range. The high variable will be
set to mid − 1, and we will recalculate the mid.

Figure 4.5

At this point in the execution, mid at 1 means we are
considering the value 24. As 27 is greater than 24, we will now update
the low variable to mid + 1 or 2.

Next, we have the case where low equals high, and that
means either we have found the key or the key does not exist. We
see that 27 is in the array, and we would report that it is found. The
image below gives this scenario:

Figure 4.6

Search | 129

The game description and array example should give you
an idea of how Binary Search can efficiently find keys in a sorted
data structure. Let us examine an implementation of this algorithm.
For our design, we will return the index of the value if it is found
or −1 as an invalid index to indicate the key was not found. We will
consider an array of integer keys, but it will work equally well with
objects assuming they are sorted by their relevant keys.

This is a subtle and powerful algorithm. It may take some
thinking to understand. Think about when the algorithm would
reach line 15. This means that the value at array[mid] is neither
higher nor lower than the key. If it is not higher or lower, it must be
the key! We return the index of the key in this case.

The case of the key missing from the array is also subtle.
How could the algorithm reach line 17? To reach line 17, low must
be a value greater than high. How could this happen? Think back
to our example above when low, high, and mid were all pointing to
index 2 and we were searching for the key 27. Suppose instead of
27 at position 2, the array had 25 at position 2, which still preserved
the sorted order (22, 24, 25, 35, 43, 45, 47, 48). The algorithm would
check “Is 27 less than 25?” at line 7. No, this is false. Next, it would
check “Is 27 greater than 7?” at line 10. This is true, so low would be
updated to mid + 1, or 3 in this case, and the loop would begin again.
Only now, low is 3 and high is 2, and the loop condition fails and the
return −1 at line 17 is reached.

130 | Search

Binary Search Complexity

Now we will assess the complexity of Binary Search. The space
complexity of Binary Search is O(1) or constant space. From another
perspective, one might consider this auxiliary space and say that
O(n) space is needed to hold the data. From our perspective, we
will assume that the database is needed already for other purposes
and not consider its O(n) space cost a requirement of Binary Search.
We will only consider the space demand for the algorithm to be the
few extra variables that serve as the array indexes. Specifically, our
algorithm only uses the low, high, and mid indexes. We could also
factor in a reference for the array’s position in memory and a copy of
the key value. Even with these extra variables consuming space, only
a constant amount of extra memory is needed, leaving the space
complexity of the array-based Binary Search at O(1).

The time complexity of Binary Search requires a bit of
explanation, but the logic behind the proof is similar to arguments
we have seen before (see “Powers of 2 in O(log n) Time” in chapter
2 and “Merge Sort Complexity” in chapter 3). First, consider the
best-case scenario. The best case would be if the key item is found
at the mid position on the very first check. In our example above,
this would occur if our key was 35, which is in position 3 (mid =
floor((0 + 7) / 2) = 3). In the best case, the time complexity of Binary
Search is O(1). This matches the best case for Linear Search. In
the worst case, Binary Search must continue to update the range
of possible locations for the key. This update process essentially
eliminates half of the range each time our loop runs. This means
that determining the Big-O complexity for Binary Search depends
on determining how many times we can halve the range before
reaching a single element. Here we have repeated division by two,
which we should now know leads to O(log n). We will present this
a little more formally below. Letting T(n) be the time cost in the
number of operations for Binary Search on an array of N elements,

Search | 131

T(n)=c + T(n/2).

Here c is a constant number of operations (making a
comparison, updating a value, and so on; it may be different on
different computer architectures).

We can expand this like so:

T(n)=c + (c + T(n/4))

=2c + T(n/22)

=2c + (c + T(n/23))

=3c + T(n/23).

This leads us to the following formula:

T(n)=k*c + T(n/2k).

Ultimately, repeatedly reducing the range of valid choices
will lead to a single element that must be compared with the key. So
we want to find the k that makes n/2k equal to 1. This value is log2

n, which we will abbreviate to just log n.
Substituting back into the equation gives the following:

132 | Search

T(n)=(log n)*c + T(n/2log n)

=(log n)*c + T(n/n)

=(log n)*c + c.

We are left with a constant multiple of log n for a worst-case time
complexity of O(log n).

A time complexity of O(log n) is considered extremely fast
in most contexts and is an excellent scaling bound for an algorithm.
Consider a Linear Search with 1,000 items. That algorithm may have
to make nearly 1,000 comparison checks to determine if the key is
found. A Binary Search for a sorted array of 1,000 items needs to
make only about 10 checks. For an array of 1,000,000 elements, the
Linear algorithm may make nearly 1 million checks, while the Binary
Search checks only about 20 in the worst case! That is an excellent
improvement (1 million >> 20).

Binary Search Complexity in Context

We are all ready to celebrate and embrace the amazing properties
of Binary Search with its O(log n) search time complexity, but there
is a catch. As we mentioned, the array must be sorted, and typically
we cannot do much better than O(n log n) for sorting (without
some extra information). Would that mean that, in reality, Binary
Search is O(n log n + log n) leading to O(n log n)? In a sense, yes.
If we had to start from an unsorted array, we would need to first
sort it. This would give us a sorting cost of O(n log n). Then any
subsequent search on the data would only cost O(log n). This would
make the total cost of Binary Search bounded by its most expensive
operation, the sorting part. Oh no, Binary Search is actually O(n log

Search | 133

n)—all is lost! Well, let us use our analysis skills to try to determine
why and when Binary Search would be more useful than Linear
Search.

The important realization is that sorting is a one-time cost.
Once the array is sorted, all subsequent searches can be done in
O(log n). Let us think about how this compares to Linear Search,
which always has a cost of O(n) regardless of the number of the
number of times the array is searched. Another name for the act of
searching is called a query. A query is a question, and we are asking
the data structure the question “Do you have the information we
need?” Suppose that the variable Q is the number of queries that are
made of the data structure.

Querying our array using Linear Search Q times would give
the following time cost with c being a constant associated with O(n):

TLS(n, Q)=Q * c * n.

Querying our array using Binary Search Q times would give the
following cost:

TBS(n. Q)=c*(n * log n) + Q * c * (log n).

Now suppose that Q was close to the size of n. We could rewrite
these like this:

134 | Search

T′LS(n)=n * c * n

=c * n2.

This leads to a time complexity of O(n2) for searching with
approximately n different queries.

For Binary Search, we have the following adjusted formula:

T′BS(n)=c*(n * log n) + n * c * (log n)

=2 * c * (n log n).

This leads to a time complexity of O(n log n) for searching with
approximately n different queries.

This means that if you plan on searching the data structure
n or more times, Binary Search is the clear winner in terms of
scalability.

As a final note, you should always try to run empirical
tests on your workloads and hardware to draw conclusions about
performance. Processor implementations on modern computers
can further complicate these questions. For example, the CPU’s
branch prediction and cache behavior may make Linear Search on
a sorted list faster than some clever algorithmic search
implementation in terms of actual runtimes.

Search | 135

Exercises

1. Implement a Linear Search in your language of
choice. Use the following plan to test your
implementation on an array of 100 randomly generated
values (in random order). Randomly generate 100 values,
and use Linear Search to find the value 42. Have your
search print the number of unsuccessful checks before
finding the value 42 (or reporting not found).

2
. Take the search function from exercise 1, and

modify it to count and return the number of checks
Linear Search takes to find the value 42 in a random array.
Write a loop to repeat this experiment 100 times, and
average the number of checks it takes to find a specific
value. What is that number close to? How does it change
if you increase the number of tests from 100 to 1,000?

3
. The reasoning used to determine the time

complexity of Binary Search closely resembles similar
arguments from chapter 2 on recursion. Implement
Binary Search as a recursive algorithm by adding extra
parameters for the high and low variables. Make sure your
function is tail-recursive to facilitate tail-call
optimization.

4
. With your implementations of Linear and Binary

Search, write some tests to generate a number of random
queries. Calculate the total time to conduct n/2 queries
on a randomly generated dataset. Be sure to include the

136 | Search

sorting time for your Binary Search database before
calculating the total time for all queries. Compare your
result to the Linear Search total query time. Next, repeat
this process for n, 2*n, and 4*n queries. At what number
of queries does Sorting + Binary Search start to show an
advantage over Linear Search?

References

Due to the age and simplicity of these algorithms, many
of the published works in the early days of computing refer
to them as being “well known.” Donald Knuth gives some
early references to their origin in volume 3 of The Art of
Computer Programming.

Knuth, Donald E. The Art of Computer Programming.
Pearson Education, 1997.

Search | 137

5. Linked Lists

Learning Objectives

After reading this chapter you will…

• begin to understand how differences in data
structures result in trade-offs and help when
choosing which to apply in a real-world scenario.

• begin to use links or references to build more
complex data structures.

• grasp the power and limitations of common arrays.

Introduction

You have a case of cola you wish to add to your refrigerator. Your
initial approach is to add all colas to the refrigerator while still in
the box. That way, when you want to retrieve a drink, they are all
in the same place, making them easier to find. You will also know
when you are running low because the box will be nearly empty.
Storing them while still in the box clearly has some benefits. It does
come with one major issue though. Consider a refrigerator filled
with groceries. You may not have an empty spot large enough to
accommodate the entire case of cola. However, if you open the case
and store each can individually, you can probably find some spot for
each of the 12 cans. You have now found a way to keep all cans cold,

138 | Linked Lists

but locating those cans is now more difficult than it was before.
You are now faced with a trade-off: Would you rather have all cans
cold at the cost of slower retrieval times or all cans warm on the
counter with faster retrieval times? This leads to judgment calls, like
deciding between how much we value a cold cola and how quickly
we need to retrieve one.

Our case of cola is like a data structure, and storing all cans
in the box is analogous to an array. Just like the analogy, let us start
by listing some of the desirable characteristics of arrays.

• We know exactly how many elements reside in them, both now
and in the future. We know this because (in most languages)
we are required to specify the length explicitly. Also, most
implementations of arrays do not allow us to simply resize as
needed. As we will see soon, this can be both a beneficial
feature and a constraint.

• They are fast. Arrays are indexable data structures with
lookups in constant time. In other words, if you have an array
with 1,000 elements, getting the value at index 900 does not
mean that you must first look at the first 899 elements. We can
do this because array implementations rely on storage within
contiguous blocks of memory. Those contiguous blocks have
predictable and simple addressing schemes. If you are standing
at the beginning of an array (say at address 0X43B), you can
simply multiply 900 by the size of the element type stored in
the array and look up the memory location that is that distance
from the starting point. This can be done in constant time,
O(1).

These desirable characteristics are also constraints if you
look at them from a different perspective.

• Having an explicit length configured before you use the array
does mean that we know the length without having to inspect
the data structure, but it also means that we cannot add any

Linked Lists | 139

new elements once we reach the capacity of the array. For
plenty of applications, we may not know the proper size before
we begin processing.

• Arrays are fast because they are stored in contiguous blocks of
memory. However, for really large sets of data, it may be
expensive (regarding time) or impossible (regarding space) to
find a sufficiently large contiguous block of memory. In these
cases, an array may perform poorly or not at all.

It is clear that, under certain circumstances, arrays may not
serve all our needs. We now have a motivation for new types of data
structures, which bring with them new trade-offs. The first of these
new data structures that we will consider is the linked list.

Structure of Linked Lists

Linked lists are the first of a series of reference-based data
structures that we will study. The main difference between arrays
and linked lists is how we define the structure of the data. With
arrays, we assumed that all storage was contiguous. To locate the
value at index 5, we simply take the address of the beginning of the
array and add 5 times the size of the data type we are storing. That
gives us the address of the data we wish to retrieve. Of course, most
modern languages give us simpler indexing operators to accomplish
the task, but the description above is essentially what happens at a
lower level.

Linked lists do not use contiguous memory, which implies
that some other means of specifying a sequence must be used.
Linked lists (along with trees and graphs in later chapters) all use
the concept of a node, which references other nodes. By leveraging
these references and adding a value (sometimes called a payload),
we can create a data structure that is distinctive from arrays and has
different trade-offs.

140 | Linked Lists

Figure 5.1

When working with the linked list, the next element in the
structure, starting from a given element, is determined by following
the reference to the next node. In the example below, node a
references (or points to) node b. To determine the elements in the
structure, you can inspect the payloads as you follow the references.
We follow these references until we find a null reference (or a
reference that points to nothing). In this case, we have a linked list
of length 2, which has the value 1 followed by the value 12.

Linked Lists | 141

Figure 5.2

From a practical standpoint, implementations require that

the chosen language have some sort of feature that allows for
grouping the value with the reference. Most languages will
accomplish this task with either structs or objects. For pseudocode
examples, we will assume the following definition of a node. The
payload is of type integer because it is convenient for the remainder
of the chapter, but the data stored in the node can be of any type
that is useful given some real-world circumstances.

Let us consider the following explicitly defined list with
powers of 3 as the values. The choice of values is intended to
reinforce the sequential nature of the data structure and could have
easily been any other well-known sequence. The critical step is

142 | Linked Lists

how the Next reference is assigned to subsequent nodes in lines 9,
10, and 11. Later, we will define a procedure for inserting values at
an arbitrary position, but for now, we will use a as our root. The
resulting linked list is depicted in figure 5.3.

Figure 5.3

Linked Lists | 143

Operations on Linked Lists

Lookup (List Traversal)

Continuing the comparison with arrays, our first task will be to look
up the value at an arbitrary position relative to a particular node
in a linked list. You may consider a position in a linked list as the
analogue of an array’s index. It is the ordinal number for a specific
value or node within the data structure. For the sake of consistency,
we will use 0-based positions.

We address lookup first because it most clearly illustrates
the means by which we traverse the linked list. On line 2, we start
with some node, then lines 3 and 4 step forward to the next node an
appropriate number of times. Whenever we wish to insert, delete, or
look up a value or simply visit each node, we must either iteratively
or recursively follow the Next reference for the desired number of
sequential nodes.

Now that we have a means of looking up a value at an
arbitrary position, we must consider how it performs. We start
again by considering arbitrary index lookups in arrays. Recall that
a lookup in an array is actually a single dereference of a memory
address. Because dereferencing on an array is not dependent on the
size of the array, the runtime for array lookups is O(1). However, to
look up an arbitrary element in a linked list (say, the nth element),
we must dereference n − 1 different addresses as we follow the Next
reference. We now have a number of dereferences dependent on
the length of the linked list. Specifically, our cost function of the

144 | Linked Lists

worst-case scenario will be f(n) = n − 1, where n is the length, which
is clearly O(n). Dereferencing within some loop or with recursion is
a featured pattern in nearly every linked list algorithm. Therefore, in
most cases, we will expect these algorithms to run in O(n) time.

Length (and Additional Means of Traversal)

While it is the case that most list traversals are implemented with
for-loops, there are occasions where other styles of traversal are
more appropriate. For example, for-loops are ill-suited for scenarios
where we do not know exactly how many times we must loop.
As a result, while-loops are often used whenever all nodes must
be visited. Consider the function below, which returns an integer
representing the number of elements in the list starting at
rootNode:

Also worth noting is that, due to the self-referencing
definition of the Node class, many list procedures are reasonably
implemented using recursion. If you consider a given root node, the
length of a linked list starting at that node will be the sum of 1 and
the length of the list starting at the Next reference (the recursive
case). The length of a list starting with a null node is 0 (the base
case).

Linked Lists | 145

As we explore more algorithms in this book, we will
discover that often recursive solutions drastically reduce the
complexity of our implementation. However, we should pay close
attention here. Because we dereference the Next node for every
node visited, our solution still runs in O(n) time.

Insert

To create a general-purpose data structure, our next operation will
be to insert new values at arbitrary positions within the linked list.
For the sake of simplicity, this function assumes that the position is
valid for the current length of the linked list.

When reading and trying to comprehend this algorithm, we
should pay close attention to three key things:

• We again see a linear traversal through the list to a given
position by traversing the Next reference. As usual, it does not
matter whether this is achieved with a for-loop, a while-loop,
or recursion, the result is still the same. We maneuver through
a list by starting at some point and following the references to
other nodes. This is an incredibly important concept, as it lays

146 | Linked Lists

the foundation for more interesting and useful data structures
later in this book.

• When implementing algorithms, edge cases sometimes require
specific attention. This function is responsible for inserting the
value at a desired position, regardless of whether that position
is 0, 2, or 200. Inserting a value into the middle of a linked list
means that we must set references for the prior’s Next as well
as newNode.Next. Inserting at position 0 is fundamentally
different in that there is no prior node.

• More so than other statements, lines 14 and 15 may feel
interchangeable. They are not. Much like the classic exchange
exercise in many programming textbooks, executing these
statements in the reverse order will lead to different behavior.
It is a worthwhile exercise to consider what the outcome
would be if they were switched.

We can visually trace the following example of an insertion:

Linked Lists | 147

Figure 5.4

148 | Linked Lists

Next, we come to the runtime analysis of this function. Due
to the linear traversal, we consider the algorithm itself to be of
O(n) regardless of whether we are inserting at position 2 or 200.
However, what if we want to insert at position 0? In this case, the
number of operations required is not dependent on the length of
the linked list, and therefore this specific case runs in O(1). When
studying algorithms, we typically categorize using the worst-case
scenario but may specify edge-case runtimes when appropriate. In
other words, if we only ever care about inserting at the front of a
linked list, we may consider this special case of insert to be an O(1)
operation.

Remove

Now that we have seen how to traverse the list via the Next
reference and rearrange those references to insert a new node,
we are ready to address removal of nodes. We will continue to
provide the root node and a position to the function. Also, because
we might choose to remove the element at the 0 position, we will
continue to return the root node of the resulting list. As with the
insertAtPosition, we assume that the value for position is valid for
this list.

Linked Lists | 149

Figure 5.5

The result of the diagram above is that a traversal of the
linked list will indeed include the values 8, 9, and 11 as desired. We
should pay close attention to the node with value 10. Depending
on the language we choose to implement linked lists, we may or
may not be required to address this removed node. If the language’s
runtime is memory managed, you may simply ignore the
unreferenced node. In languages that rely on manual memory
management, you should be prepared to deallocate the storage. The
runtime for the algorithm, as a function of the length of the list,
is still O(n), with the special case of position as 0 running again in
constant time.

150 | Linked Lists

Doubly Linked Lists

Consider a scenario where we want to track the sequence of
changes to a shared document. Compared to arrays, a linked list
can grow as needed and is better suited for the task. We choose
to inspect the change at position 500 in the linked list at a cost of
499 dereferences. We then realize we stepped two changes too far.
We are actually concerned with change 498. We must then incur a
cost of 497 dereferences to simply move backward two steps. The
issue is that our nodes currently only point to the next value in the
sequence and not the previous. Luckily, we can simply choose to
include a Prior reference.

Figure 5.6

The choice to track prior nodes in addition to the next
nodes does come with trade-offs. First, the size of each node stored
is now larger. If we assume an integer is the same size as a reference,
we have likely increased the size of each node stored by 50%.
Depending on the needs of the application, constraints of the

Linked Lists | 151

physical device, and size of the linked list, this increase may or may
not be acceptable.

We also have more complicated (and technically slightly
slower) functions for insertion and removal of nodes. See the
pseudocode below for considerations in the general case. The case
when position is 0 has also been omitted. Completing that case is an
exercise at the end of this chapter.

Reference Reassignment for Singly Linked
List Insert

Reference Reassignment for Doubly Linked
List Insert

If we would like to make use of a Prior reference, we now must
maintain that value on each insertion and removal. At times it is
as easy as setting a value on an object (line 2). Other times we
have to introduce a new condition (line 4). In this case, we check
newNode.Next against null because we may be inserting our new
value at the end of the list, in which case, there will not be any node
with Prior set to newNode. Doubly linked list insert now requires

152 | Linked Lists

as many as 5 operations where we only had 2 for singly linked lists.
While this does mean that doubly linked list insert is technically
slower, we only perform these operations once per function call. As
a result, we have two functions that run in O(n) even though one is
technically faster than the other.

Returning to the change tracking example at the beginning
of this section, we now have a means of moving forward and
backward through our list of changes. If we wish to start our
analysis of the change log at entry 500, it will indeed cost us 499
dereferences to reach that node. However, once at that node, we
can inspect entry 498 with a cost of 2 dereferences by following the
Prior reference.

Augmenting Linked Lists

Just as we saw when inserting or removing at position 0, we can
often find clever ways to improve certain behaviors of linked lists.
These improvements may lead to better runtimes or simply have a
clearer intent. In this section, we will consider the most common
ways linked lists are augmented. Generally speaking, we will follow
the same strategy used for doubly linked lists. The main principle is
this: At the time that we know some useful bit of information, we
will choose to simply save it for later. This will lead to a marginally
higher cost for certain operations and a larger amount of data to
store, but certain operations will become much faster.

So far in this chapter, we have implicitly defined a list as
a single node representing the root element. To augment our data
structure, we will now more formally define the full concept of a list
as follows. For the definition of this class, we can choose to use a
singly or doubly linked node. For simplicity, examples in this section
return to using a singly linked node.

Linked Lists | 153

As was the case with doubly linked lists, our insert and
remove code is now substantially more complicated. One nice
benefit is that we now modify the list object and no longer need to
return the root node.

For each insert into the list, we must now maintain some
new values on the list object. Lines 7, 8, 11, and 22 help keep track
of when we have changed the head or tail of the list. Line 24 runs
regardless of where the value was inserted because we now have
one more element in the list.

This extra work was not in vain. Consider what was
required if we wanted to write a function to return the last element
of a linked list represented by the root node compared to running it
on a list object.

154 | Linked Lists

Last Element Using Root Node and Next
References

Last Element Using the List and Tail
References

The same improvements can be seen in retrieving the length of a
list.

Length Using Root Node and Next
References

Linked Lists | 155

Length Using the List and Length Values

Abstract Data Types

Before closing this chapter on linked lists, we benefit from
considering abstractions. An abstract data type (ADT) is a collection
of operations we want to perform on a given data type. Just as we
can imagine numerous implementations for a given data structure
(maybe we change a for-loop to a while-loop or recursion), we can
also imagine numerous data structures that satisfy an ADT.

Consider the operations defined above for linked lists. We
often want to insert, delete, count, and iterate over list elements.
We call this set of operations a list ADT. A list may be implemented
using linked nodes, an array, or some other means. However, it
must provide these four operations. Implied in this description of
ADTs is the fact that we cannot discuss the asymptotic runtime
or space requirements of an ADT. Without knowing how the ADT
is implemented, we cannot conclude much (if anything) about the
runtime. For example, we could conclude that iteration is no better
than O(n) because iteration requires us to touch each element
regardless of implementation. We could not determine anything
about the runtime of lookup because an array would be O(1), a linked
list O(n), and a skip list O(log n). This last data structure is not
formally covered in this chapter.

In subsequent chapters, we will at times refer to ADTs
without specifying the precise data structure. In doing so, we will
be able to focus on the new data structure without concern for how
the ADT is implemented. Naturally, when we address the runtimes

156 | Linked Lists

and space utilization of those algorithms, we must choose between
data structures.

Exercises

1. Write three functions that print all values in a singly
linked list. Write one using each of the following: for-loop,
while-loop, and recursion.

2. Write a removeAtPosition function for a doubly
linked list that correctly maintains the Prior reference
when the removal occurs at position 0, length − 1, or some
arbitrary position in between.

3. Write a removeAtPosition function for a singly linked
list that correctly maintains the Head and Tail references
when the removal occurs at position 0, length − 1, or some
arbitrary position between.

References

Cormen, Thomas H., Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms, 2nd
ed. Cambridge, MA: The MIT Press, 2001.

Linked Lists | 157

6. Stacks and Queues

Learning Objectives

After reading this chapter you will…

• learn how data structures can help facilitate the
orderly processing of organized data.

• learn the basic operations of stacks and queues.
• learn how abstract data types help us define

concepts while delaying implementation details.

Introduction

Consider reading an article on Wikipedia. You read until you
encounter an unfamiliar term, then you click it to open a new
article. You continue this process until you have several pages open
simultaneously. Then you receive a phone call. It is a close friend,
and you choose to derail your studies for a few minutes. After your
chat, you return to your browser and try to pick up where you left
off. You find a series of tabs open. The tab farthest to the left was
your original article. The tab farthest to the right was the most
recent. The tabs between occur in the order in which you clicked
related articles.

You decide you must be as systematic as possible as you get

158 | Stacks and Queues

back to your train of thought. Should you start at the leftmost or
rightmost tab? What can we determine about these options?

• Left-to-right: In this strategy, you choose to go back to
reading the original article you opened. After all, it was the
most important when you sat down to start your research, so
you should probably get started there. Then as needed, you
can continue to work through other tabs. If you choose this
strategy, it is because you assume that you had opened tabs
because you might be interested in them later.

• Right-to-left: In this strategy, you assume that you opened
“Formal system” because you wanted to understand it better
while reading “Decidability (logic),” which was open because
you were reading “Decision problem.” If you choose this
strategy, it is because you assume that you opened each
additional tab due to some context present in the prior tab.

Both strategies share some commonalities. New
information was encountered in some sort of linear fashion. The
choice is which to prioritize. Is it important to process the
information in the order it was received? Or is it more important to
process the most recent information first? Here we have a problem
with two reasonable solutions depending on our original
expectations and desired outcome.

These options reflect two related but distinct abstractions.
Both queues and stacks store values in a sequential manner in the
order in which they arrived. A queue processes the input that
arrived first before that which arrived second. For this reason, we
consider queues to have a first-in-first-out (or FIFO) property. A
stack instead processes the most recently received input first.
Likewise, we consider stacks to have a last-in-first-out (or LIFO)
property.

Queues are always present in our natural life. Whenever
we “line up” for something, we have formed a queue. Queues have
a visceral fairness about them. Those who arrived at the grocery

Stacks and Queues | 159

store checkout first are served first. Those in line earlier for that
big movie premiere are more likely to get seats. Queues are also
convenient because they preserve a temporal sequence. Consider
a system like a document editor. You specify changes to the
document, and those changes are made. These must be processed
in the order they are received because one change is likely
dependent on whether the prior has been completed.

However, queues are not always the most expressive way
to process a stream of data. Consider the call stack from our prior
investigation of recursion in chapter 2. Each new function call
encountered is processed within the context of the function call
that came prior. While it is true that some other function call came
before that, we are more concerned with maintaining the
contextual reference rather than the temporal one. Stacks are also
convenient when no implied order or precedence is required. In
that case, inserting and retrieving data from the same end of the
structure (LIFO) is often more efficient than the FIFO alternative.

You may have noticed that we have not explicitly referred
to stacks and queues as data structures. While the term “data
structure” may be considered appropriate for queues and stacks,
a more appropriate description would be abstract data type. This
distinction will be the first topic of this chapter.

Abstract Data Types

With linked lists, we described desired operations alongside a
specific structure that satisfies that behavior. At times it is beneficial
to decouple the two. The nodes represented the data structure,
while the set of desired operations (such as insertion and deletion)
formed what is called the abstract data type (ADT).

In this chapter, we define queues and stacks as abstract
data types before specifying underlying data structures. Different
reference texts specify slightly different operations. For the

160 | Stacks and Queues

purposes of this text, we define queue and stack with three defined
operations:
Queue

• enqueue: places an element at the tail of the queue
• dequeue: removes the next available element from the head of

the queue
• isEmpty: returns true or false depending on whether the

underlying data structure has any remaining elements

Stack

• push: places an element at the top of a stack
• pop: removes an element from the top of a stack
• isEmpty: returns true or false depending on whether the

underlying data structure has any remaining elements

We have three important nuances thus far:

1. We have not specified exactly how we intend to guarantee
these operations or how we will store elements until we
dequeue or pop them.

2. The above definitions use words like head, tail, and top. From
one text to another, these words may change. The important
part is that queues have elements entering on one end and
leaving from the other. Stacks have elements entering and
leaving from the same orientation.

3. We cannot yet specify the runtime of any of these operations.
We can only do so once the actual underlying data structures
have been specified.

In the following sections, we illustrate how these
operations can be satisfied with linked lists or arrays.

Stacks and Queues | 161

Linked Lists

Linked lists are well suited for both queues and stacks. First, adding
and removing elements is simply a matter of creating a node and
setting a reference or removing a reference. Second, we have a
fairly intuitive means of tracking both ends of the data structure.
For purposes of this section, we will assume a singly linked node
discussed earlier in this book.

162 | Stacks and Queues

Figure 6.1

First, assess the runtime of each operation. Most
operations on linked lists are O(n) due to the fact we have to
traverse lists one node reference at a time. In this special case of
queues and stacks, no traversal is necessary as long as we maintain
a reference to the head or tail. No matter how many elements we
enqueue or push, we only ever care about one or two nodes at any
given time. The result is an elegant solution that runs in O(1) time
for most operations.

Our analysis is not yet complete though, as we must also
consider space. Considering that we are working with singly linked
nodes, each has a reference and a value. If we want to store 100
integers in our queue or stack, we must have a node for each. Again,
assuming that a reference is the same size as an integer, we result in
a data structure with twice the overall storage footprint of the data
itself. We do, however, still have the slight benefit that it does not
have to be stored in contiguous memory locations.

Stacks and Queues | 163

Arrays

Just as we chose to implement a queue and a stack with a linked
list, we could likewise choose to store the data in an array. As long
as we have definitions for all operations that satisfy the operations
specified for the ADT, the result will be just as effective.

Before defining the data structure, we should address the
primary challenge when creating array-based queues and stacks.
Arrays have a fixed length. Operations on queues and stacks are
primarily about adding or removing elements from the underlying
structure. How can we use a fixed-length data structure to
implement an ADT that necessitates change? The answer typically
involves some clever tricks. We define the data structures below and
then systematically walk through these tricks:

164 | Stacks and Queues

Figure 6.2

Storage Allocation Considerations

How can we ensure we have enough space in our array for the next

Stacks and Queues | 165

invocation of enqueue or push? The typical strategy is to initially
allocate an array with some amount of excess capacity then
reallocate and copy to a larger array as needed. In the QueueArray
and StackArray classes, these reallocations occur at lines 11 and 9.
This challenge is a balancing act. On one hand, allocating too much
space results in waste, as it cannot be used for other purposes while
it is part of the allocated array. On the other hand, allocating too
little results in more frequent reallocations. This creates issues in
two ways.

First, when reallocation is required, our constant-time
enqueue or push operation momentarily becomes O(n) with regard
to the number of elements stored. From a big-picture perspective,
this is not a major issue. Recall from chapter 1 that infrequently
required additional steps permit us to talk in terms of amortized
cost. The reallocation is indeed expensive but happens so
infrequently that other enqueue or push invocations essentially
absorb that cost. The result is in an amortized runtime of O(1) for
these two operations.

Amortized runtimes do not always tell the same story as
nonamortized. In both cases, we can generally expect an invocation
to complete efficiently regardless of the number of elements in
the queue or stack. The key word here is generally. Consider an
application that is responsible for processing a queue with large
volumes of real-time data. It may successfully invoke enqueue
hundreds of times with a runtime between 5 and 15 milliseconds. A
problem arises when the application is dependent on this level of
performance because, at some point, an enqueue might trigger a
reallocation and instead complete in 500 milliseconds.

The second issue with reallocations pertains to space
usage. Not only are we regularly wasting space, but the reallocation
itself temporarily consumes excess memory. If we are reallocating
and copying from one large array to another, there is a small window
of time where the original array and the new array are both
consuming precious contiguous blocks of memory. These blocks

166 | Stacks and Queues

can be expensive to allocate and even create failures in cases where
a large enough contiguous block is not available.

Another clever trick can be applied to queues. Consider
what happens when we have an initial array of length 10. We then
enqueue and dequeue 10 elements, shifting our head and tail
indexes to the end of the array. Our next enqueue will trigger a
reallocation even though we are not currently using all 10 spots in
our current array. We have the required space allocated but no clear
means to access it. The trick lies in how we index into the array.
Instead of using tailPos and headPos alone, we still use them but
modulo the size of the array. If we do so, our eleventh enqueue and
dequeue will use index 10. The result of 10 modulo 10 is 0 and will
result in the usage of array position 0. The twelfth enqueue will use
index 11, which becomes 1 after modulo 10. Following this strategy
(often referred to as wrapping around), we can continue to reuse the
original space allocated if our dequeue rate does not lag behind our
enqueue rate.

Stacks and Queues | 167

Figure 6.3

Practical Considerations

At the end of the last section, we devised a clever solution to
improve the utilization of space already allocated. Although it has
improved the data structure on the whole, it now creates a new
issue. We now need a new means of determining when to reallocate
the array. This can be addressed by keeping an explicit count of
how many array elements are currently being used. However, once
we have solved that issue, we must then decide how to handle
headPos and tailPos. We had relied on using them modulo the size
of the array, but now that size has changed. This is the nature of
data structures. We often perceive them as static constructs that

168 | Stacks and Queues

we study, memorize, and reimplement in new languages. In reality,
they are dynamic and evolve as we apply basic concepts to novel
problems.

It is also often the case that ADTs and data structures do
not exist in isolation. Many languages blend queues and stacks with
lists into a single data type. C++ vectors, JavaScript arrays, and
Python lists all implement certain operations of these three ADTs
(queues, stacks, and lists).

Again, specifying operations in an ADT does not necessarily
imply any underlying structure. How, then, do these languages store
sequential data? The process typically follows a narrative similar
to that of wrapping around in array-based queues. A developer
desires some traits of a clever solution, but implementing such a
solution then leads to a new set of challenges. Working through
these challenges requires both in-depth theoretical knowledge and
a grasp of the real-world system. Once considering that real-world
context, where modern memory is abundant and constant-time
lookups are strongly desirable, most sequential data types make
heavier use of arrays than linked lists.

Exercises

1. In your choice of high-level language, implement
stack and queue with a built-in sequential data type (such
as List for Python or Vector for C++). What operations did
you use on that data type? Research your language’s
documentation to determine the runtime of your
enqueue, dequeue, push, and pop operations.

2. The wraparound trick applied to array-based queues

Stacks and Queues | 169

only works if the application dequeues at least as fast as it
enqueues. Describe real-world scenarios where we
expect this might be true.

References

Cormen, Thomas H., Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms, 2nd
ed. Cambridge, MA: The MIT Press, 2001.

170 | Stacks and Queues

7. Hashing and Hash Tables

Learning Objectives

After reading this chapter you will…

• understand what hash functions are and what they
do.

• be able to use hash functions to implement an
efficient search data structure, a hash table.

• understand the open addressing strategy for
implementing hash tables.

• understand the potential problems with using hash
functions for searching.

• be able to implement a hash table using data
structure composition and the separate chaining
strategy.

Introduction

In chapter 4, we explored a very important class of problems:
searching. As the number of items increases, Linear Search becomes
very costly, as every search costs O(n). Additionally, the real-world
time cost of searching increases when the number of searches (also
called queries) increases. For this reason, we explored sorting our
“keys” (our unique identifiers) and then using Binary Search on data

Hashing and Hash Tables | 171

sets that get searched a lot. Binary Search improves our
performance to O(log n) for searches. In this chapter, we explore
ways to further improve search to approximately O(1) or constant
time on average. There are some considerations, but with a good
design, searches can be made extremely efficient. The key to this
seemingly magic algorithm is the hash function. Let’s explore
hashes a bit more in-depth.

Hash Functions

If you have ever eaten breakfast at a diner in the USA, you were
probably served some hash browns. These are potatoes that have
been very finely chopped up and cooked. In fact, this is where the
“hash” of the hash function gets its name. A hash function takes a
number, the key, and generates a new number using information in
the original key value. So at some level, it takes information stored
in the key, chops the bits or digits into parts, then rearranges or
combines them to generate a new number. The important part,
though, is that the hash function will always generate the same
output number given the input key. There are many different types
of hash functions. Let’s look at a simple one that hashes the key 137.
We will use a small subscript of 2 when indicating binary numbers.

172 | Hashing and Hash Tables

Figure 7.1

We can generate hashes using strings or text as well. We
can extract letters from the string, convert them to numbers, and
add them together. Here is an example of a different hash function
that processes a string:

Figure 7.2

There are many hash functions that can be constructed for
keys. For our purposes, we want hash functions that exhibit some
special properties. In this chapter, we will be constructing a lookup
table using hashes. Suppose we wanted to store student data for
100 students. If our hash function could take the student’s name as
the key and generate a unique index for every student, we could
store all their data in an array of objects and search using the hash.
This would give us constant time, or O(1), lookups for any search!
Students could have any name, which would be a vast set of possible
keys. The hash function would look at the name and generate a valid
array index in the range of 0 to 99.

The hash functions useful in this chapter map keys from

Hashing and Hash Tables | 173

a very large domain into a small range represented by the size of
the table or array we want to use. Generally, this cannot be done
perfectly, and we get some “collisions” where different keys are
hashed to the same index. This is one of the main problems we
will try to fix in this chapter. So one property of the hash function
we want is that it leads to few collisions. Since a perfect hash is
difficult to achieve, we may settle for an unbiased one. A hash
function is said to be uniform if it hashes keys to indexes with
roughly equal probability. This means that if the keys are uniformly
distributed, the generated hash values from the keys should also
be roughly uniformly distributed. To state that another way, when
considered over all k keys, the probability h(k) = a is approximately
the same as the probability that h(k) = b. Even with a nice hash
function, collisions can still happen. Let’s explore how to tackle
these problems.

Hash Tables

Once you have finished reading this chapter, you will understand
the idea behind hash tables. A hash table is essentially a lookup table
that allows extremely fast search operations. This data structure
is also known as a hash map, associative array, or dictionary. Or
more accurately, a hash table may be used to implement associative
arrays and dictionaries. There may be some dispute on these exact
terms, but the general idea is this: we want a data structure that
associates a key and some value, and it must efficiently find the
value when given the key. It may be helpful to think of a hash table
as a generalization of an array where any data type can be used as
an index. This is made possible by applying a hash function to the
key value.

For this chapter, we will keep things simple and only use
integer keys. Nearly all modern programming languages provide a
built-in hash function or several hash functions. These language

174 | Hashing and Hash Tables

library–provided functions can hash nearly all data types. It is
recommended that you use the language-provided hash functions
in most cases. These are functions that generally have the nice
properties we are looking for, and they usually support all data types
as inputs (rather than just integers).

A Hash Table Using Open Addressing

Suppose we want to construct a fast-access database for a list of
students. We will use the Student class from chapter 4. We will
slightly alter the names though. For this example, we will use the
variable name key rather than member_id to simplify the code and
make the meaning a bit clearer.

We want our database data structure to be able to support
searches using a search operation. Sometimes the term “find” is
used rather than “search” for this operation. We will be consistent
with chapter 4 and use the term “search” for this operation. As the
database will be searched frequently, we want search to be very
efficient. We also need some way to add and remove students from
the database. This means our data structure should support the add
and remove operations.

The first strategy we will explore with hash tables is known
as open addressing. This means that we will allot some storage
space in memory and place new data records into an open position
addressed by the hash function. This is usually done using an array.
Let the variable size represent the number of positions in the array.

Hashing and Hash Tables | 175

With the size of our array known, we can introduce a simple hash
function where mod is the modulo or remainder operator.

This hash function maps the key to a valid array index. This
can be done in constant time, O(1). When searching for a student in
our database, we could do something like this:

This would ensure a constant-time search operation. There
is a problem, though. Suppose our array had a size of 10. What would
happen if we searched for the student with key 18 and another
student with key 28? Well, 18 mod 10 is 8, and 28 mod 10 is 8. This
simple approach tries to look for the same student in the same array
address. This is known as a collision or a hash collision.

176 | Hashing and Hash Tables

Figure 7.3

We have two options to deal with this problem. First, we
could use a different hash function. There may be another way
to hash the key to avoid these collisions. Some algorithms can
calculate such a function, but they require knowledge of all the
keys that will be used. So this is a difficult option most of the
time. The second alternative would be to introduce some policy for
dealing with these collisions. In this chapter, we will take the second
approach and introduce a strategy known as probing. Probing tries
to find the correct key by “probing” or checking other positions
relative to the initial hashed address that resulted in the collision.
Let’s explore this idea with a more detailed example and
implementation.

Open Addressing with Linear Probing

Let us begin by specifying our hash table data structure. This class
will need a few class functions that we will specify below, but first
let’s give our hash table some data. Our table will need an array of
Student records and a size variable.

To add new students to our data structure, we will use an
add function. There is a simple implementation for this function
without probing. We will consider this approach and then improve

Hashing and Hash Tables | 177

on it. Assume that the add function belongs to the HashTable class,
meaning that table and size are both accessible without passing
them to the function.

Once a student is added, the HashTable could find the
student using the search function. We will have our search function
return the index of the student in the array or −1 if the student
cannot be found.

This approach could work assuming our hash was perfect.
This is usually not the case though. We will extend the class to
handle collisions. First, let’s explore an example of our probing
strategy.

Probing

Suppose we try to insert a student, marked as “A,” into the database
and find that the student’s hashed position is already occupied.
In this example, student A is hashed to position 2, but we have a
collision.

178 | Hashing and Hash Tables

Figure 7.4

With probing, we would try the next position in the probe
sequence. The probe sequence specifies which positions to try next.
We will use a simple probe sequence known as linear probing.
Linear probing will have us just try the next position in the array.

Figure 7.5

Hashing and Hash Tables | 179

This figure shows that first we get a collision when trying
to insert student A. Second, we probe the next position in the array
and find that it is empty, so student A is inserted into this array
slot. If another collision happens on the same hash position, linear
probing has us continue to explore further into the array and away
from the original hash position.

Figure 7.6

This figure shows that another collision will require more
probing. You may now be thinking, “This could lead to trouble.” You
would be right. Using open addressing with probing means that
collisions can start to cause a lot of problems. The frequency of
collisions will quickly lead to poor performance. We will revisit this
soon when we discuss time complexity. For now, we have a few
other problems with this approach.

Add and Search with Probing

Let us tackle a relatively simple problem first. How can we

180 | Hashing and Hash Tables

implement our probe sequence? We want our hash function to
return the proper hash the first time it is used. If we have a collision,
our hash needs to return the original value plus 1. If we have two
collisions, we need the original value plus 2, and so on. For this, we
will create a new hashing function that takes two input parameters.

With this function, hash(2,2) would give the value 4 as in the
previous figure. In that example, when trying to insert student B, we
get an initial collision followed by a second collision with student A
that was just inserted. Finally, student B is inserted into position 4.

Did you notice the other problem? How will we check to
see if the space in the array is occupied? There are a variety of
approaches to solving this problem. We will take a simple approach
that uses a secondary array of status values. This array will be used
to mark which table spaces are occupied and which are available.
We will add an integer array called status to our data structure.
This approach will simplify the code and prepare our HashTable
to support remove (delete) operations. The new HashTable will be
defined as follows:

We will assign a status value of 0 to an empty slot and a
value of 1 to an occupied slot. Now to check if a space is open and
available, the code could just check to see if the status value at that
index is 0. If the status is 1, the position is filled, and adding to
that location results in a collision. Now let’s use this information to
correct our add function for using linear probing. We will assume

Hashing and Hash Tables | 181

that all the status values are initialized with 0 when the HashTable
is constructed.

Now that we can add students to the table, let us develop
the search function to deal with collisions. The search function will
be like add. For this algorithm, status[index] should be 1 inside the
while-loop, but we will allow for −1 values a bit later. This is why 0 is
not used here.

We need to discuss the last operation now: remove. The
remove operation may also be called delete in some contexts. The
meaning is the same though. We want a way to remove students
from the database. Let’s think about what happens when a student
is removed from the database. Think back to the collision example

182 | Hashing and Hash Tables

where student B is inserted into the database. What would happen
if A was removed and then we searched for B?

Figure 7.7

If we just marked a position as open after a remove
operation, we would get an error like the one illustrated above. With
this sequence of steps, it seems like B is not in the table because
we found an open position as we searched for it. We need to deal
with this problem. Luckily, we have laid the foundation for a simple
solution. Rather than marking a deleted slot as open, we will give
it a deleted status code. In our status array, any value of −1 will
indicate that a student was deleted from the table. This will solve the
problem above by allowing searches to proceed past these deleted
positions in the probe sequence.

The following function can be used to implement the
remove function. This approach relies on our search function that
returns the correct index. Notice how the status array is updated.

Hashing and Hash Tables | 183

Depending on your implementation, you may also want to
free the memory at table[index] at line 5. We are assuming that
student records are stored directly in the array and will be
overwritten on the next add operation for that position. If
references are used, freeing the data may need to be explicit.

Take a careful look back at the search function to convince
yourself that this is correct. When the status is −1, the search
function should proceed through past collisions to work correctly.
We now have a correct implementation of a hash table. There are
some serious drawbacks though. Let us now discuss performance
concerns with our hash table.

Complexity and Performance

We saw that adding more students to the hash table can lead to
collisions. When we have collisions, the probing sequence places the
colliding student near the original student record. Think about the
situation below that builds off one of our previous examples:

Figure 7.8

184 | Hashing and Hash Tables

Suppose that we try to add student C to the table and C’s
key hashes to the index 3. No other student’s key hashes to position
3, but we still get 2 collisions. This clump of records is known as a
cluster. You can see that a few collisions lead to more collisions and
the clusters start to grow and grow. In this example, collisions now
result if we get keys that hash to any index between 2 and 5.

What does this mean? Well, if the table is mostly empty
and our hash function does a decent job of avoiding collisions, then
add and search should both be very efficient. We may have a few
collisions, but our probe sequences would be short and on the
order of a constant number of operations. As the table fills up,
we get some collisions and some clusters. Then with clustering,
we get more collisions and more clustering as a result. Now our
searches are taking many more operations, and they may approach
O(n) especially when the table is full and our search key is not
actually in the database. We will explore this in a bit more detail.

A load factor is introduced to quantify how full or empty
the table is. This is usually denoted as α or the Greek lowercase
alpha. We will just use an uppercase L. The load factor can be
defined as simply the ratio of added elements to the total capacity.
In our table, the capacity is represented by the size variable. Let n
be the number of elements to be added to the database. Then the
overall load factor for the hash table would be L = n / size. For our
table, L must be less than 1, as we can only store as many students
as we have space in the array.

How does this relate to runtime complexity? Well, in the
strict sense, the worst-case performance for searches would be
O(n). This is represented by the fact that when the table is full, we
must check nearly all positions in the table. On the other hand,
our analysis of Quick Sort showed that the expected worst-case
performance can mean we get a very efficient and highly useful
algorithm even if some cases may be problematic. This is the case
with hash tables. Our main interest is in the average case
performance and understanding how to avoid the worst-case
situation. This is where the load factor comes into play. Donald

Hashing and Hash Tables | 185

Knuth is credited with calculating the average number of probes
needed for linear probing in both a successful search and the more
expensive unsuccessful search. Here, a successful search means
that the item is found in the table. An unsuccessful search means
the item was searched for but not found to be in the table. These
search cost values depend on the L value. This makes sense, as
a mostly empty table will be easy to insert into and yield few
collisions.

The expected number of probes for a successful search
with linear probing is as follows:

For unsuccessful searches, the number of probes is larger:

186 | Hashing and Hash Tables

Let’s put these values in context. Suppose our table size is
50 and there are 10 student records inserted into the table giving
a load factor of 10/50 = 0.2. This means on average a successful
search needs 1.125 probes. If the table instead contains 45 students,
we can expect an average of 5.5 probes with an L of 45/50 = 0.9.
This is the average. Some may take longer. The unsuccessful search
yields even worse results. With an L of 10/50 = 0.2, an unsuccessful
search would yield an average of 1.28 probes. With a table of lead L
= 45/50 = 0.9, the average number of probes would be 50.5. This is
close to the worst-case O(n) performance.

We can see that the average complexity is heavily
influenced by the load factor L. This is true of all open addressing
hash table methods. For this reason, many hash table data
structures will detect that the load is high and then dynamically
reallocate a larger array for the data. This increases capacity and
reduces the load factor. This approach is also helpful when the table
accumulates a lot of deleted entries. We will revisit this idea later
in the chapter. Although linear probing has some poor performance
at high loads, the nature of checking local positions has some
advantages with processor caches. This is another important idea
that makes linear probing very efficient in practice.

The space complexity of a hash table should be clear. We
need enough space to store the elements; therefore, the space
complexity is O(n). This is true of all the open addressing methods.

Other Probing Strategies

One major problem with linear probing is that as collisions occur,
clusters begin to grow and grow. This blocks other hash positions
and leads to more collisions and therefore more clustering. One
strategy to reduce the cluster growth is to use a different probing
sequence. In this section, we will look at two popular alternatives
to linear probing. These are the methods of quadratic probing and

Hashing and Hash Tables | 187

double hashing. Thanks to the design of our HashTable in the
previous section, we can simply define new hash functions. This
modular design means that changing the functionality of the data
structure can be done by changing a single function. This kind of
design is sometimes difficult to achieve, but it can greatly reduce
repeated code.

Quadratic Probing

One alternative to linear probing is quadratic probing. This
approach generates a probe sequence that increases by the square
of the number of collisions. One simple form of quadratic probing
could be implemented as follows:

The following illustration shows how this might improve on
the problem of clustering we saw in the section on linear probing:

188 | Hashing and Hash Tables

Figure 7.9

With one collision, student A still maps to position 3
because 2 + 12 = 3. When B is mapped though, it results in 2
collisions. Ultimately, it lands in position 6 because 2 + 22 = 6, as the
following figure shows:

Figure 7.10

Hashing and Hash Tables | 189

When student C is added, it will land in position 4, as 3 + 12

= 4. The following figure shows this situation:

Figure 7.11

Now instead of one large primary cluster, we have two
somewhat smaller clusters. While quadratic probing reduces the
problems associated with primary clustering, it leads to secondary
clustering.

One other problem with quadratic probing comes from the
probe sequence. Using the approach we showed where the hash
is calculated using a formula like h(k) + c2, we will only use about
size/2 possible indexes. Look at the following sequence: 1, 4, 9, 16,
25, 36, 49, 64, 81, 100, 121, 144. Now think about taking these values
after applying mod 10. We get 1, 4, 9, 6, 5, 6, 9, 4, 1, 0, 1, 4. These give
only 6 unique values. The same behavior is seen for any mod value
or table size. For this reason, quadratic probing usually terminates
once the number of collisions is half of the table size. We can make
this modification to our algorithm by modifying the probing loop in
the add and search functions.

For the add function, we would use

190 | Hashing and Hash Tables

For the search function, we would use

When adding, it is assumed that encountering size/2
collisions means that the table is full. It is possible that this is
incorrect. There may be open positions available even after
quadratic probing has failed. If attempting to add fails, it is a good
indicator that the load factor has become too high anyway, and the
table needs to be expanded and rebuilt.

Double Hashing

In this section, we will look at an implementation of a hashing
collision strategy that approaches the ideal strategy for an open
addressed hash table. We will also discuss how to choose a good
table size such that our hash functions perform better when our
keys do not follow a random uniform distribution.

Hashing and Hash Tables | 191

Choosing a Table Size

So far, we have chosen a table size of 10 in our examples. This
has made it easy to think about what hash value is generated from
a base-10 numerical key. This would be fine assuming our key
distribution was truly uniform in the key domain. In practice, keys
can have some properties that result in biases and ultimately
nonuniform distributions. Take, for example, the use of a memory
address as a key. On many computer systems, memory addresses
are multiples of 4. As another example, in English, the letter “e”
is far more common than other letters. This might result in keys
generated from ASCII text having a nonuniform distribution.

Let’s look at an example of when this can become a
problem. Suppose we have a table of size 12 and our keys are all
multiples of 4. This would result in all keys being initially hashed to
only the indexes 0, 4, or 8. For both linear probing and quadratic
probing, any key with the initial hash value will give the same
probing sequence. So this example gives an especially bad situation
resulting in poor performance under both linear probing and
quadratic probing. Now suppose that we used a prime number
rather than 12, such as 13. The table below gives a sequence of
multiples of 4 and the resulting mod values when divided by 12 and
13.

192 | Hashing and Hash Tables

Figure 7.12

It is easy to see that using 13 performs much better than
12. In general, it is favored to use a table size that is a prime value.
The approach of using a prime number in hash-based indexing
is credited to Arnold Dumey in a 1956 work. This helps with
nonuniform key distributions.

Implementing Double Hashing

As the name implies, double hashing uses two hash functions rather
than one. Let’s look at the specific problem this addresses. Suppose
we are using the good practice of having size be a prime number.
This still cannot overcome the problem in probing methods of
having the same initial hash index. Consider the following situation.
Suppose k1 is 13 and k2 is 26. Both keys will generate a hashed value
of 0 using mod 13. The probing sequence for k1 in linear probing is
this:

Hashing and Hash Tables | 193

h(k1,0) = 0, h(k1,1) = 1, h(k1,2) = 2, and so on. The same is
true for k2.

Quadratic probing has the same problem:

hQ(k1, 0) = 0, hQ(k1, 1) = 1, hQ(k1, 2) = 2. This is the same
probe sequence for k2.

Let’s walk through the quadratic probing sequence a little
more carefully to make it clear. Recall that

hQ(k,c) = (k mod size + c2) mod size

using quadratic probing. The following table gives the probe
sequence for k1 = 13 and k2 = 26 using quadratic probing:

194 | Hashing and Hash Tables

Figure 7.13

The probe sequence is identical given the same initial hash.
To solve this problem, double hashing was introduced. The idea
is simple. A second hash function is introduced, and the probe
sequence is generated by multiplying the number of collisions by
a second hash function. How should we choose this second hash
function? Well, it turns out that choosing a second prime number
smaller than size works well in practice.

Let’s create two hash functions h1(k) and h2(k). Now let p1 be
a prime number that is equal to size. Let p2 be a prime number such
that p2 < p1. We can now define our functions and the final double
hash function:

h1(k) = k mod p1

h2(k) = k mod p2.

The final function to generate the probe sequence is here:

Hashing and Hash Tables | 195

h(k, c) = (h1(k) + c*h2(k)) mod size.

Let’s let p1 = 13 = size and p2 = 11 for our example. How would this
change the probe sequence for our keys 13 and 26? In this case h1(13)
= h1(26) = 0, but h2(13) = 2, h2(26) = 4.

Consider the following table:

Figure 7.14

Now that we understand double hashing, let’s start to
explore one implementation in code. We will create two hash
functions as follows:

The second hash function will use a variable called prime,
which has a value that is a prime number smaller than size.

196 | Hashing and Hash Tables

Finally, our hash function with a collisions parameter is
developed below:

As before, these can be easily added to our HashTable data
structure without changing much of the code. We would simply
add the hashOne and hashTwo functions and replace the two-
parameter hash function.

Complexity of Open Addressing Methods

Open addressing strategies for implementing hash tables that use
probing all have some features in common. Generally speaking, they
all require O(n) space to store the data entries. In the worst case,
search-time cost could be as bad as O(n), where the data structure
checks every entry for the correct key. This is not the full story
though.

As we discussed before with linear probing, when a table
is mostly empty, adding data or searching will be fast. First, check
the position in O(1) with the hash. Next, if the key is not found and
the table is mostly empty, we will check a small constant number
of probes. Search and insert would be O(1), but only if it’s mostly
empty. The next question that comes to mind is “What does ‘mostly
empty’ mean?” Well, we used a special value to quantify the

Hashing and Hash Tables | 197

“fullness” level of the table. We called this the load factor, which we
represented with L.

Let’s explore L and how it is used to reason about the
average runtime complexity of open addressing hash tables. To
better understand this idea, we will use an ideal model of open
addressing with probing methods. This is known as uniform
hashing, which was discussed a bit before. Remember the problems
of linear probing and quadratic probing. If any value gives the same
initial hash, they end up with the same probe sequence. This leads
to clustering and degrading performance. Double hashing is a close
approximation to uniform hashing. Let’s consider double hashing
with two distinct keys, k1 and k2. We saw that when h1(k1) = h1(k2),
we can still get a different probe sequence if h2(k1) ≠ h2(k2). An
ideal scenario would be that every unique key generates a unique
but uniform random sequence of probe indexes. This is known as
uniform hashing. Under this model, thinking about the average
number of probes in a search is a little easier. Let’s think this
through.

Remember that the load on the table is the ratio of filled
to the total number of available positions in the table. If n elements
have been inserted into the table, the load is L = n / size. Let’s
consider the case of an unsuccessful search. How many probes
would we expect to make given that the load is L? We will make
at least one check, but next, the probability that we would probe
again would be L. Why? Well, if we found one of the (size − n)
open positions, the search would have ended without probing. So
the probability of one unsuccessful probe is L. What about the
probability of two unsuccessful probes? The search would have
failed in the first probe with probability L, and then it would fail
again in trying to find one of the (n − 1) occupied positions among
the (size − 1) remaining available positions. This leads to a probability
of

198 | Hashing and Hash Tables

Things would progress from there. For 3 probes, we get the
following:

On and on it goes. We extrapolate out to x probes:

This sequence would be smaller than assuming a probability of L
for every missed probe. We could express this relationship with the
following equation:

Hashing and Hash Tables | 199

This gives us the probability of having multiple failed
probes. We now want to think about the expected number of
probes. One failed probe has the probability of L, and having more
failed probes is less likely. To calculate the expected number of
probes, we need to add the probabilities of all numbers of probes.
So the P(1 probe) + P(2 probes)…on to infinity. You can think of this
as a weighted average of all possible numbers of probes. A more
likely number of probes contributes more to the weighted average.
It turns out that we can calculate a value for this infinite series.
The sum will converge to a specific value. We arrive at the following
formula using the geometric series rule to give a bound for the
number of probes in an unsuccessful search:

This equation bounds the expected number of probes or
comparisons in an unsuccessful search. If 1/(1−L) is constant, then
searches have an average case runtime complexity of O(1). We saw
this in our analysis of linear probing where the performance was
even worse than for the ideal uniform hashing.

For one final piece of analysis, look at the plot of 1/(1−L)

200 | Hashing and Hash Tables

between 0 and 1. This demonstrates just how critical the load factor
can be in determining the expected complexity of hashing. This
shows that as the load gets very high, the cost rapidly increases.

Figure 7.15

For completeness, we will present the much better
performance of a successful search under uniform hashing:

Hashing and Hash Tables | 201

Successful searches scale much better than unsuccessful ones, but
they will still approach O(n) as the load gets high.

Chaining

An alternative strategy to open addressing is known as chaining
or separate chaining. This strategy uses separate linked lists to
handle collisions. The nodes in the linked list are said to be “chained”
together like links on a chain. Our records are then organized by
keeping them on “separate chains.” This is the metaphor that gives
the data structure its name. Rather than worrying about probing
sequences, chaining will just keep a list of all records that collided at
a hash index.

This approach is interesting because it represents an
extremely powerful concept in data structures and algorithms,
composition. Composition allows data structures to be combined
in multiple powerful ways. How does it work? Well, data structures
hold data, right? What if that “data” was another data structure? The
specific composition used by separate chaining is an array of linked
lists. To better understand this concept, we will visualize it and
work through an example. The following image shows a chaining-

202 | Hashing and Hash Tables

based hash table after 3 add operations. No collisions have occurred
yet:

Figure 7.16

The beauty of separate chaining is that both adding and
removing records in the table are made extremely easy. The
complexity of the add and remove operations is delegated to the
linked list. Let’s assume the linked list supports add and remove
by key operations on the list. The following functions give example
implementations of add and remove for separate chaining. We will
use the same Student class and the simple hash function that
returns the key mod size.

The add function is below. Keep in mind that table[index]
here is a linked list object:

Here is the remove function that, again, relies on the linked
list implementation of remove:

Hashing and Hash Tables | 203

When a Student record needs to be added to the table,
whether a collision occurs or not, the Student is simply added to the
linked list. See the diagram below:

Figure 7.17

When considering the implementation, collisions are not
explicitly considered. The hash index is calculated, and student A is
inserted by asking the link list to insert it. Let’s follow a few more
add operations.

Suppose a student, B, is added with a hash index of 2.

204 | Hashing and Hash Tables

Figure 7.18

Now if C is added with a hash index of 3, it would be placed
in the empty list at position 3 in the array.

Hashing and Hash Tables | 205

Figure 7.19

Here, the general idea of separate chaining is clear. Maybe
it is also clear just how this could go wrong. In the case of search
operations, finding the student with a given key would require
searching for every student in the corresponding linked list. As you
know from chapter 4, this is called Linear Search, and it requires
O(n) operations, where n is the number of items in the list. For the
separate chaining hash table, the length of any of those individual
lists is hoped to be a small fraction of the total number of elements,
n. If collisions are very common, then the size of an individual
linked list in the data structure would get long and approach n
in length. If this can be avoided and every list stays short, then
searches on average take a constant number of operations leading
to add, remove, and search operations that require O(1) operations
on average. In the next section, we will expand on our
implementation of a separate chaining hash table.

Separate Chaining Implementation

For our implementation of a separate chaining hash table, we will
take an object-oriented approach. Let us assume that our data are
the Student class defined before. Next, we will define a few classes
that will help us create our hash table.

We will begin by defining our linked list. You may want
to review chapter 4 before proceeding to better understand linked
lists. We will first define our Node class and add a function to return
the key associated with the student held at the node. The node class
holds the connections in our list and acts as a container for the
data we want to hold, the student data. In some languages, the next

206 | Hashing and Hash Tables

variable needs to be explicitly declared as a reference or pointer to
the next Node.

We will now define the data associated with our LinkedList
class. The functions are a little more complex and will be covered
next.

Our list will just keep track of references to the head and
tail Nodes in the list. To start thinking about using this list, let’s
cover the add function for our LinkedList. We will add new students
to the end of our list in constant time using the tail reference. We
need to handle two cases for add. First, adding to an empty list
means we need to set our head and tail variables correctly. All other
cases will simply append to the tail and update the tail reference.

Searching in the list will use Linear Search. Using the
currentNode reference, we check every node for the key we are

Hashing and Hash Tables | 207

looking for. This will give us either the correct node or a null
reference (reaching the end of the list without finding it).

You may notice that we return currentNode regardless of
whether the key matches or not. What we really want is either a
Student object or nothing. We sidestepped this problem with open
addressing by returning −1 when the search failed or the index of
the student record when it was found. This means upstream code
needs to check for the −1 before doing something with the result.
In a similar way here, we send the problem upstream. Users of the
code will need to check if the returned node reference is null. There
are more elegant ways to solve this problem, but they are outside of
the scope of the textbook. Visit the Wikipedia article on the Option
Type for some background. For now, we will ask the user of the class
to check the returned Node for the Student data.

To finish our LinkedList implementation for chaining, we
will define our remove function. As remove makes modifications to
our list structure, we will take special care to consider the different
cases that change the head and tail members of the list. We will also
use the convention of returning the removed node. This will allow
the user of the code to optionally free its memory.

208 | Hashing and Hash Tables

Now we will define our hash table with separate chaining.
In the next code piece, we will define the data of our HashTable
implemented with separate chaining. The HashTable’s main piece
of data is the composed array of LinkedLists. Also, the simple hash
function is defined (key mod size).

Here the simplicity of the implementation shines. The
essential operations of the HashTable are delegated to LinkedList,
and we get a robust data structure without a ton of programming
effort! The functions for the add, search, and remove operations are
presented below for our chaining-based HashTable:

Hashing and Hash Tables | 209

One version of remove is provided below:

Some implementations of remove may expect a node
reference to be given. If this is the case, remove could be
implemented in constant time assuming the list is doubly linked.
This would allow the node to be removed by immediately accessing
the next and previous nodes. We have taken the approach of using a
singly linked list and essentially duplicating the search functionality
inside the LinkedList’s remove function.

Not bad for less than 30 lines of code! Of course, there is
more code in each of the components. This highlights the benefit
of composition. Composing data structures opens a new world of
interesting and useful data structure combinations.

Separate Chaining Complexity

Like with open addressing methods, the worst-case performance of
search (and our remove function) is O(n). Probing would eventually
consider nearly all records in our HashTable. This makes the O(n)
complexity clear. Thinking about the worst-case performance for
chaining may be a little different. What would happen if all our

210 | Hashing and Hash Tables

records were hashed to the same list? Suppose we inserted n
Students into our table and that they all shared the same hash index.
This means all Students would be inserted into the same LinkedList.
Now the complexity of these operations would all require examining
nearly all student records. The complexity of these operations in the
HashTable would match the complexity of the LinkedList, O(n).

Now we will consider the average or expected runtime
complexity. With the assumption that our keys are hashed into
indexes following a simple uniform distribution, the hash function
should, on average, “evenly” distribute the records along all the lists
in our array. Here “evenly” means approximately evenly and not
deviating too far from an even split.

Let’s put this in more concrete terms. We will assume that
the array for our table has size positions, and we are trying to insert
n elements into the table. We will use the same load factor L to
represent the load of our table, L = n / size. One difference from our
open addressing methods is that now our L variable could be greater
than 1. Using linked lists means that we can store more records in
all of the lists than we have positions in our array of lists. When n
Student records have been added to our chaining-based HashTable,
they should be approximately evenly distributed between all the
size lists in our array. This means that the n records are evenly
split between size positions. On average, each list contains
approximately L = n / size nodes. Searching those lists would
require O(L) operations. The expected runtime cost for an
unsuccessful search using chaining is often represented as O(1 + L).
Several textbooks report the complexity this way to highlight the
fact that when L is small (less than 1) the cost of computing the
initial hash dominates the 1 part of the O(1 + L). If L is large, then it
could dominate the complexity analysis. For example, using an array
of size 1 would lead to L = n / 1 = n. So we get O(1 + L) = O(1 + n) =
O(n). In practice, the value of L can be kept low at a small constant.
This makes the average runtime of search O(1 + L) = O(1 + c) for
some small constant c. This gives us our average runtime of O(1) for
search, just as we wanted!

Hashing and Hash Tables | 211

For the add operation, using the tail reference to insert
records into the individual lists gives O(1) time cost. This means
adding is efficient. Some textbooks report the complexity of remove
or delete to be O(1) using a doubly linked list. If the Node’s reference
is passed to the remove function using this implementation, this
would give us an O(1) remove operation. This assumes one thing
though. You need to get the Node from somewhere. Where might
we get this Node? Well, chances are that we get it from a search
operation. This would mean that to effectively remove a student
by its key requires O(1 + L) + O(1) operations. This matches the
performance of our implementation that we provided in the code
above.

The space complexity for separate chaining should be easy
to understand. For the number of records we need to store, we will
need that much space. We would also need some extra memory
for references or pointer variables stored in the nodes of the
LinkedLists. These “linking” variables increase overall memory
consumption. Depending on the implementation, each node may
need 1 or 2 link pointers. This memory would only increase the
memory cost by a constant factor. The space required to store the
elements of a separate chaining HashTable is O(n).

Design Trade-Offs for Hash Tables

So what’s the catch? Hash tables are an amazing data structure
that has attracted interest from computer scientists for decades.
These hashing-based methods have given a lot of benefits to the
field of computer science, from variable lookups in interpreters and
compilers to fast implementations of sets, to name a few uses. With
hash tables, we have smashed the already great search performance
of Binary Search at O(log n) down to the excellent average case
performance of O(1). Does it sound too good to be true? Well, as
always, the answer is “It depends.” Learning to consider the

212 | Hashing and Hash Tables

performance trade-offs of different data structures and algorithms
is an essential skill for professional programmers. Let’s consider
what we are giving up in getting these performance gains.

The great performance scaling behavior of search is only in
the average case. In practice, this represents most of the operations
of the hash tables, but the possibility for extremely poor
performance exists. While searching on average takes O(1), the
worst-case time complexity is O(n) for all the methods we
discussed. With open addressing methods, we try to avoid O(n)
performance by being careful about our load factor L. This means
that if L gets too large, we need to remove all our records and re-add
them into a new larger array. This leads to another problem, wasted
space. To keep our L at a nice value of, say, 0.75, that means that 25%
of our array space goes unused. This may not be a big problem, but
that depends on your application and system constraints. On your
laptop, a few missing megabytes may go unnoticed. On a satellite
or embedded device, lost memory may mean that your costs go
through the roof. Chaining-based hash tables do not suffer from
wasted memory, but as their load factor gets large, average search
performance can suffer also. Again, a common practice is to remove
and re-add the table records to a larger array once the load crosses
a threshold. It should be noted again though that separate chaining
already requires a substantial amount of extra memory to support
linking references. In some ways, these memory concerns with hash
tables are an example of the speed-memory trade-off, a classic
concept in computer science. You will often find that in many cases
you can trade time for space and space for time. In the case of hash
tables, we sacrifice a little extra space to speed up our searches.

Another trade-off we are making may not be obvious. Hash
tables guarantee only that searches will be efficient. If the order of
the keys is important, we must look to another data structure. This
means that finding the record with key 15 tells us nothing about the
location of records with key 14 or 16. Let’s look at an example to
better understand this trade-off in which querying a range might be
a problem for hash tables compared to a Binary Search.

Hashing and Hash Tables | 213

Suppose we gave every student a numerical identifier when
they enrolled in school. The first student got the number 1, the
second student got the number 2, and so on. We could get every
student that enrolled in a specific time period by selecting a range.
Suppose we used chaining to store our 2,000 students using the
identifier as the key. Our 2,000 students would be stored in an array
of lists, and the array’s size is 600. This means that on average each
list contains between 3 and 4 nodes (3.3333…). Now we need to
select 20 students that were enrolled at the same time. We need
all the records for students whose keys are between 126 to 145
(inclusive). For a hash table, we would first search for key 126, add
it to the list, then 127, then 128, and so on. Each search takes about
three operations, so we get approximately 3.3333 * 20 = 66.6666
operations. What would this look like for a Binary Search? In Binary
Search, the array of records is already sorted. This means that once
we find the record with key 126, the record with key 127 is right
next to it. The cost here would be log2(2000) + 20. This supposes
that we use one Binary Search and 20 operations to add the records
to our return list. This gives us approximately log2(2000) + 20 =
10.9657 + 20 = 30.9657. That is better than double our hash table
implementation. However, we also see that individual searches
using the hash table are over 3 times as fast as the Binary Search
(10.6657 / 3.333 = 3.2897).

Exercises

1. On a sheet of paper, draw the steps of executing
the following set of operations on a hash table
implemented with open addressing and probing. Draw the

214 | Hashing and Hash Tables

table, and make modifications after each operation to
better understand clustering. Keep a second table for the
status code.

a. Using linear probing with a table of size 13,
make the following changes: add key 12; add key 13;
add key 26; add key 6; add key 14, remove 26, add
39.

b. Using quadratic probing with a table of size
13, make the following changes: add key 12; add key
13; add key 26; add key 6; add key 14, remove 26, add
39.

c. Using double hashing with a table of size 13,
make the following changes: add key 12; add key 13;
add key 26; add key 6; add key 14, remove 26, add
39.

2
. Implement a hash table using linear probing as

described in the chapter using your language of choice,
but substitute the Student class for an integer type. Also,
implement a utility function to print a representation of
your table and the status associated with each open slot.
Once your implementation is complete, execute the
sequence of operations described in exercise 1, and print
the table. Do your results match the paper results from
exercise 1?

3
. Extend your linear probing hash table to have a

load variable. Every time a record is added or removed,
recalculate the load based on the size and the number of
records. Add a procedure to create a new array that has
size*2 as its new size, and add all the records to the new

Hashing and Hash Tables | 215

table. Recalculate the load variable when this procedure is
called. Have your table call this rehash procedure anytime
the load is greater than 0.75.

4
. Think about your design for linear probing. Modify

your design such that a quadratic probing HashTable or a
double hashing HashTable could be created by simply
inheriting from the linear probing table and overriding
one or two functions.

5
. Implement a separate chaining-based HashTable

that stores integers as the key and the data. Compare the
performance of the chaining-based hash table with linear
probing. Generate 100 random keys in the range of 1 to
20,000, and add them to a linear probing-based
HashTable with a size of 200. Add the same keys to a
chaining-based HashTable with a size of 50. Once the
tables are populated, time the execution of conducting
200 searches for randomly generated keys in the range.
Which gave the better performance? Conduct this test
several times. Do you see the same results? What factors
contributed to these results?

References

216 | Hashing and Hash Tables

Cormen, Thomas H., Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms, 2nd
ed. Cambridge, MA: The MIT Press, 2001.

Dumey, Arnold I. “Indexing for Rapid Random Access
Memory Systems,” Computers and Automation 5, no. 12
(1956): 6–9.

Flajolet, P., P. Poblete, and A. Viola. “On the Analysis of
Linear Probing Hashing,” Algorithmica 22, no. 4 (1998):
490–515.

Knuth, Donald E. “Notes on ‘Open’ Addressing.” 1963.
https://jeffe.cs.illinois.edu/teaching/datastructures/
2011/notes/knuth-OALP.pdf.

Malik, D. S. Data Structures Using C++. Cengage
Learning, 2009.

Hashing and Hash Tables | 217

8. Search Trees

Learning Objectives

After reading this chapter you will…

• extend your understanding of linked data
structures.

• learn the basics techniques that drive performance
in modern databases.

Introduction

We begin by listing some desirable aspects of data structures:

• economical and dynamic memory consumption
• ability to insert or delete keys in sublinear time
• ability to look up keys by exact match to a key in sublinear time
• ability to retrieve several key values based on a range

With these criteria in mind, let us review some of the data
structures studied so far. Arrays allow us constant-time lookup,
assuming we know the index of the item we want to retrieve.
Finding that index requires a linear traversal of an unsorted array
or a logarithmic Binary Search of a sorted array. Arrays have an
unfortunate side effect in that they must be preallocated in memory.

218 | Search Trees

As a result, inserts and deletes require either excess allocation or
reallocation (with a great deal of copying).

We then considered linked lists. Conveniently, we are not
required to know the capacity before performing the initial insert.
Linked lists are less economic in memory consumption, as each
stored datum requires us to also store a next (and possibly previous)
reference. Locating a particular position for insert or delete
requires a Linear Search, but the insertions or deletions at that
point are constant time.

Then we arrived at hash tables. Finally, we had a data
structure that allowed for true constant-time lookups based on
a key. Inserts and deletes were also constant-time operations,
assuming a sufficient hash function. These improvements were
substantial but left us no option for retrieval of values based on a
range.

What we want is some general-purpose data structure that
maximizes the desired utility of linked lists while minimizing the
rigidity of arrays and hash tables. Binary search trees fit nicely into
this niche. Reusing some concepts we have learned so far, we can
achieve sublinear times for inserts, deletions, and retrievals. We can
grow and shrink our size as needed. We will require more storage
than arrays but will not require the excess capacity as with hash
tables.

Brief Introduction to Trees

Binary search trees are a subclass of binary trees, which are a
subclass of trees, which are a subclass of graphs. Here we will only
introduce enough details to facilitate an understanding of binary
search trees. In chapter 11, we will provide more precise
mathematical definitions of graphs and trees.

Trees (as well as graphs in general) consist of nodes and
edges. As a note, nodes are also referred to as vertices (or vertex

Search Trees | 219

in the singular form). We will use nodes as containers for data,
such as an integer, string, or even a database record. Nodes are
related to other nodes via edges. Each edge connects two nodes and
describes the relationship between those nodes. Edges in binary
trees are child/parent relationships. One node is the parent, and
the other is a child. Each node has at most one parent. A tree will
have exactly one node without a parent. This node is called the root.
Each node has no more than two children. A node with zero children
is called a leaf. From time to time, we may consider a subtree, which
is any given node and all its descendants. Although this chapter
will focus mainly on binary trees, you should note the term “m-ary
tree,” where m is any positive integer and represents the maximum
number of children for any given node.

Now we consider some additional tree-related terms. It is
important to note that these terms are not consistently defined
across different textbooks. In order to be consistent with another
source you may likely read (Wikipedia), I will defer to the definitions
found there. Whenever reading a new text, ensure that you first
review that source’s definition of terms:

• height—the number of nodes from a leaf node to the root,
starting at 1

• depth—the number of nodes from the root to a particular
node, starting at 1

• level—all descendants of the root that have the same depth
• full—a given m-ary tree is full if each node has exactly 0 or m

children
• complete—a given m-ary tree is complete if every level is filled

except possibly the last (which is filled from left to right)
• perfect—a given m-ary tree is perfect if it is full and all leaf

nodes are at the same depth

Below is an example of a tree. Interior nodes are gray, and
leaf nodes are white. The root node has been marked with an “R.”
Note that this is a ternary tree because any given node has at most

220 | Search Trees

three children. It is not full, which implies that it is neither complete
nor perfect.

Figure 8.1

We may now make some useful assertions regarding binary
trees:

• Because a perfect binary search tree implies that every interior
node has two children, the number of nodes (n) is 2k − 1, where
k is the number of levels in the tree. In a related manner, the
number of levels in a tree is the floor of log2 n.

• Of all nodes in a perfect binary search tree, roughly half are
leaf nodes, and the other half are interior. Precisely, the
number of leaf nodes will be the ceiling of n/2, and the
number of interior nodes will be the floor of n/2.

So far this concept of a tree does not produce much
benefit. We could assign a key to each node, but what exactly would
that mean? What does the relationship between parent and child
imply? To derive value from trees, binary trees are insufficient, and
we must apply more constraints.

Search Trees | 221

A binary search tree (BST) is a specific type of binary tree
that ensures that

• each node (N) is assigned a key.
• each node has a left child (L), which represents the subtree

rooted at node L. The key of every node in this subtree is less
than the key stored in node N. It is possible that a given node
has no left child.

• each node has a right child (R), which represents the subtree
rooted at R. The key of every node in this subtree is greater
than the key in node N. It is possible that a given node has no
right child.

Figure 8.2 is an example of a BST. The key stored in each
node is an integer but could be of any data type that can be sorted.
For convenience, we are assuming that BSTs do not contain
duplicate keys, although we do not exactly need to. The tree below
is perfect, but a BST does not need to be. As we discuss BSTs further,
we will start to consider more problematic configurations.

Figure 8.2

To understand the structure of a BST better, we can

222 | Search Trees

consider an in-order traversal of the tree. This traversal is one in
which we recursively visit the left child, current node, and right
child. If you were to print each key during an in-order traversal, the
result would be all keys from the tree in ascending order.

As implied in the figure above, nodes are modeled using
the following class. In most practical applications, the Key property
would hold some data other than type integer. Regardless, the
simplicity of this model will be useful for the remainder of the
chapter.

Searching

Searching is a simple operation. You begin at the root node
considering a key (x) you want to find. If the key stored at the node
is x, you have found it. If x is less than the node’s key, you search the
left subtree. If x is greater than the node’s key, you search the right
subtree. You continue this process until you arrive at a leaf node
and have no more children to consider. Below is the pseudocode to
further clarify the algorithm. The function is originally called with
the root node, which then changes to descendants in the recursive
calls.

Next, we should consider the runtime of searching a BST.

Search Trees | 223

Just as with searching arrays and linked lists, we want to consider
the amount of work necessary as the size of the data structure
increases. In our recursive example above, we perform between 1
and 5 comparisons on each call to search (depending on exactly
how you count). As a result, we have no more than 5 comparisons
for each node visited. Because 5 is not dependent on the overall
number of nodes, the amount of work to perform for each node
visited is constant with respect to n.

How many nodes must we visit in the worst-case scenario?
If we compare the desired value to the key at the root node and
do not find the value, we have immediately eliminated roughly half
of the values in our tree. Once at the second level, we perform the
comparison again and eliminate half of this subtree, which was in
turn half of the original. As a result, we reduce the number of keys
we have to consider by half each time we visit a child. At worst, we
will have to visit only one node in each level of the tree, resulting
in ceiling log2 n nodes visited. With O(log n) nodes visited and O(1)
amount of work at each node, search can be run in O(log n) time for
a perfect BST.

Insertion

To this point, we have assumed that a BST exists. We have yet to
create one. Insertion simply searches for a valid position where the
key would be if it existed and adds it at that position. In other words,
the search for a nonexistent key always terminates in a leaf node.
A naïve insertion algorithm considers this leaf node. If the key to
insert is less than the leaf’s key, you insert a new node as the left
child. If the new key is greater than the leaf’s key, you insert it as the
right child. Pseudocode is included below to clarify:

224 | Search Trees

Deletion

When possible, it is good practice to enumerate the possible states
that an algorithm may have to consider. When deleting a key from
a BST, the node containing that key may be in four different states
with respect to its children: no children, left child only, right child
only, and both left and right children.

No Children

First, we must locate the node containing the key to be deleted. If
that node has no children, it is by definition a leaf node. To delete
a key at the leaf node, it suffices to simply remove the parent’s
reference to the leaf node. In the example below, the node
containing the value 4 has no children. We can simply go to that
node’s parent and set the left child reference to null.

Search Trees | 225

Figure 8.3

Left Child Only / Right Child Only

If a node contains a key to be deleted and has only one child,
we can shift the appropriate subtree up. We can do this because
all descendants in a node’s left subtree are less than that node’s
value. In the case below, all left-side descendants of 8 are nodes
containing values less than 8. If 4 only has one child, we can simply
promote that child by setting 8’s left child to that node. Similar
reasoning would apply if 4 only had a right child.

226 | Search Trees

Figure 8.4

Both Left and Right Children

If a node containing a value to be deleted has both left and right
children, we now must consider the possibility that those children
may also be parents. This notably complicates the decision of what
should be node 8’s left child. If we were to shift the subtree starting
at 1 up to 8’s left child, that new node would have two right children
(2 and 6), which obviously does not work. You would encounter a
similar issue trying to promote 6 to be 8’s left child. What we need
instead is to find 4’s in-order predecessor or in-order successor,
remove that value from the tree (it is a leaf), and place it where 4
was. In the example below, we promoted 4’s in-order predecessor,
but we could have just as easily promoted the value 5.

Figure 8.5

Search Trees | 227

Unbalanced BSTs

When assessing the performance of search in BSTs, we had silently
assumed that trees are perfect (or at least complete). We relied on
this convenient property that the height of the tree was related to
the logarithm of the number of nodes. In practice, this is rarely the
case. Imagine we built a perfect BST using keys 1 through 7.

Figure 8.6

In figure 8.6, we can visualize the relationship between the
number of nodes and the height of the tree. This relationship is
logarithmic, so we can count on searching, inserting, and deleting
keys to run in logarithmic time. However, if we perform inserts as
specified above (in order from 1 to 7), we will actually end up with
the tree in figure 8.7. Take a moment to trace the algorithm with
pencil and paper to convince yourself this is the case.

228 | Search Trees

Figure 8.7

Our resulting structure, although technically a BST, also
closely resembles a sorted linked list. When we studied linked lists,
we were only able to search in linear time because all n nodes must
be visited to ensure we found the desired key. The lesson learned
is this: if we are not careful about how we perform inserts, we
may likely construct a tree structure that cannot support O(log n)
searches.

Ideally, we would love a tree to be perfect after each insert.
This is not mathematically possible. If you have a perfect tree with
seven nodes and three levels, inserting an eighth node will create a
new level and result in a state where not all leaf nodes have the same
depth. It may be desirable to maintain a complete tree. However,
recall that complete trees must fill the lowest level from left to right.
This constraint is not necessary, as we will be just as happy to fill it
out right to left or in completely arbitrary order. As we can see, we
need a new term to describe BSTs that allow for O(log n) searches
and avoid the linked list type of configuration.

Search Trees | 229

In a manner of speaking, we want our tree to be balanced
after each insert. At this time, we will loosely define balance to
be the condition such that the subtree heights of left and right
subtrees are roughly equal. That leads to our next question: Can we
modify our insert such that (1) the tree can remain balanced after
each insert and (2) inserts can still be performed in O(log n) time?

Self-Balancing Trees

Self-balancing trees are those that maintain a balanced structure
after each insertion and deletion and thus maintain an O(log n)
search time. A thorough survey of these data structures could
constitute chapters of text. This section will introduce how AVL
trees maintain a balanced structure during insertion. We focus only
on the insertion, but deletion must be addressed as well. Search,
however, does not change from the naïve BST. Additional resources
at the end of the chapter provide more information about this and
other self-balancing trees.

AVL Trees

AVL trees are named after the computer scientists who developed
them (G. M. Adelson-Velsky and E. M. Landis). After insertions that
leave the tree in an unbalanced state, we achieve balance by
performing small constant-timed adjustments called rotations.

First, we must determine whether an insertion has resulted
in an unbalanced tree. To determine this, we use a metric called
the balance factor. This integer is the difference in the heights of
a node’s left and right subtrees. Below is the simplest possible tree
where we can witness such an imbalance. As usual, values are stored
inside the node. Subtree heights are stored at the upper right of

230 | Search Trees

each node. If a left or right child does not exist, then the subtree
height is 0. In this example, the node containing 8 has a left child
with subtree height of 2 and a right child with subtree height of
0. The absolute difference between 2 and 0 is 2. This is above our
threshold of 1, so our tree is unbalanced.

Figure 8.8

We now have a means for detecting unbalanced trees and
are left to determine how to bring the tree back into balance. This
is where we employ rotations. Rotations are small, constant-time
adjustments to a subtree that improve the balance of that subtree.
They are called rotations because they have the visual effect of
rotating that subtree to a more balanced state. In figure 8.8, a
rotation makes the 5 node the new root with a left child of 4 and
a right child of 8. This is visually depicted in figure 8.9. Notice that
after the rotation, the height of the subtree starting at 8 is now 1.
Node 5 has left and right subtrees both at height 1. The difference is
0, which is not greater than 1, indicating that we are now in balance.

Search Trees | 231

Figure 8.9

We make one last consideration regarding AVL trees.
Earlier we had described this modification to BSTs as “self-
balancing” and the heights of left and right subtrees as roughly
equal. What actually happens is more nuanced and worthy of
discussion. With perfect BSTs, we concluded that the relationship
between the number of nodes in the tree and the number of
comparisons required for a search was logarithmic. For AVL trees,
we must be able to show the same relationship applies.

A proof by induction is able to show that the height of any
AVL tree is O(log n). Note the distinction here. Perfect binary trees
were shown to have a height equal to the ceiling of log2 n (or more
precisely, log2(n+1)). AVL trees are said to have a height of O(log
n), which is less precise. Rather than reviewing the inductive proof
(which can easily be found online and in many reference textbooks),
let us consider the following two trees:

232 | Search Trees

Figure 8.10

The tree on the left is a perfect BST. It has 7 nodes, which
implies a height of log2(7+1) = 3. The tree on the right is a balanced
AVL tree. Note that the height is no longer 3, even though we claim
that the tree is balanced and that search times are still O(log n). We
point this out to illustrate that while some algorithms may share the
same Big-O classification, their actual runtimes may differ. Because
of the rotations, we ensure that the difference in heights of the left
and right subtrees is no more than 1. This then ensures that our AVL
tree, while not complete or perfect, has a height no greater than 1 +
log2(n+1). The additional 1 does not significantly impact the growth
of the function as n becomes very large, so we can conclude that
searching an AVL tree can still be accomplished in O(log n) time.

Exercises

Search Trees | 233

1. Drawing your own diagrams, perform insertions
into an empty binary search tree. Can you determine the
appropriate insertion sequence to produce

a. a perfect BST of size 7?
b. a BST where each node has only left children

or no children?
c. a BST where each node has only right

children or no children?

2
. In the language of your choice, implement BST

deletes. Rather than solving the entire problem at once,
break your code into three distinct cases:

a. Node to delete has no children.
b. Node to delete has one child.
c. Node to delete has two children.

References

Alexander, Eric. “AVL Trees.” Computer Science User
Pages. University of Wisconsin-Madison. Accessed
September 27, 2023. https://pages.cs.wisc.edu/~ealexand/
cs367/NOTES/AVL-Trees/index.html

234 | Search Trees

“Binary Tree.” Wikipedia. Last modified August 28 2023.
https://en.wikipedia.org/wiki/Binary_tree

Galles, David. “AVL Tree.” USF Computer Science
Department. Accessed September 27, 2023.
https://www.cs.usfca.edu/~galles/visualization/
AVLtree.html

Galles, David. “Binary Search Tree.” USF Computer
Science Department. Accessed September 27, 2023.
https://www.cs.usfca.edu/~galles/visualization/
BST.html

Search Trees | 235

9. Priority Queues

Learning Objectives

After reading this chapter you will…

• understand the concept of a priority queue.
• understand the features of heaps, one of the most

common priority queue implementations.
• be able to implement Heap Sort, a sorting

algorithm that uses a priority queue.
• be able to explain the common operations on

priority queues and their complexity.
• be able to implement a binomial heap that supports

a fast union operation.

Introduction

We have already discussed the concept of a queue. This is a data
structure that accepts items and removes them in the order they
were inserted. This is often referred to as first-in-first-out, or FIFO.
A priority queue serves like a regular queue allowing items to be
inserted, but it allows for the item with the highest priority to
exit the queue first. We could implement a priority queue as a
simple array with a current capacity that just resorts all the items
by priority every time an item is inserted. This would mean that the

236 | Priority Queues

insert operation for our simple priority queue would be O(n log n).
There may be more clever approaches to preserve the sorted order
by moving things over. This might lead to an O(n) insert operation.
Extract could work similarly by removing the first element and then
copying all the elements over. Could we do better than O(n) though?
Linear time might be a long time to wait for a large n. For example,
suppose many players are waiting to start an online game. We could
use a priority queue to add players to the next game based on
how long they have been waiting. A game AI may want to prioritize
and target players that are the most dangerous first. We will see in
chapter 11 that priority queues are used as the foundation for some
important graph algorithms. Since this type of data structure could
be very useful, researchers and engineers have discovered a variety
of data structures that greatly improve the time-cost complexity.
We will explore two interesting implementations of priority queues
in this chapter.

Heaps

A heap is a data structure that guarantees that the minimum (or
maximum) value is easily extracted. The most common heap is a
binary heap, which is a sort of binary tree. In a binary heap, the
“left” or “right” position of a child node no longer carries any specific
meaning. Rather, in a max-binary-heap, or just max-heap, the
parent is guaranteed to be greater than both children. Min-binary-
heaps naturally reverse that relationship, with the parent
guaranteed to be less than the children. We call this quality the heap
property. It will allow us to isolate our reasoning to only subheaps
and thus aid our understanding of heap-related algorithms.

For the remainder of this section, we assume max-binary-
heaps to avoid confusion. We will also assume unique values in
our binary heap. This simplifies the relationships between parents
and their children. If a particular application of binary heaps

Priority Queues | 237

necessitates duplicate keys, this is easily remedied by adjusting the
appropriate comparisons. The figure below gives an example of a
heap:

Figure 9.1

This distinction between parent and child nodes leads to
two convenient properties of binary heaps:

• For a given heap, the maximum value (or key) is easily
accessible at the root of the tree. As we will soon see, this
implies not that it is easily extracted from the structure but
simply that finding it is trivial.

• For any given node in a binary heap, all descendants contain
values less than that node’s value. In other words, any given
subtree of a max-binary-heap is also a valid max-binary-heap.

Let us emphasize and further address a common point of
confusion. Although binary heaps are binary tree structures, their
similarities with binary search trees (BST) end there. Recall from
chapter 8 that an in-order traversal of a binary search tree will
produce a sorted result. This is true because, for any given node

238 | Priority Queues

in a BST, all left descendants are less than that node, and all right
descendants are greater than it. In binary heaps, the left descendant
is less than the parent, and the right descendant is less than it as
well, but there is no other defined relationship between the two
descendants.

To understand insertion and extraction, first note the
shape of the binary tree above. A tree is a complete binary tree if
each node has two children and all levels are filled except possibly
the last, which is filled from left to right (chapter 8). Using some
clever tricks, we can store a complete binary tree as an array.
Because each level of the tree is filled and the last is filled left
to right, we can simply list all elements in level 0, followed by all
elements in level 1, and so on. Once these values are stored in an
array, some simple arithmetic on the indexes allows traversal from
a node to its parents or its children. We will be regularly adding
and removing data from the heap itself. As we have seen in prior
chapters, arrays are an insufficient data structure for accomplishing
this. For the sake of simplicity, we will assume excess capacity at
the end of the array. In practice, we would probably use some
sort of abstract list that is able to grow or shrink and provides
constant-time lookups. This might be something like an array that
automatically reallocates when its capacity is reached.
Implementations of these lists exist in most modern languages. For
the present discussion, we can just treat the underlying storage as a
typical array. The image below shows a heap represented as an array
with integer values for the priorities:

Priority Queues | 239

Figure 9.2

For now, we will work only with integers that serve as
the priorities themselves. To extend this into a more useful data
structure, we would need only to change the contents of the array
to an object or object reference. This would allow us to hold a more
useful structure such as a student record or a game player’s data.
Then the only other change needed would be to do comparisons on
array[index].priority instead of just array[index]. This modification
is like the one we discussed regarding Linear Search in chapter
4. Recognize that we can generalize this representation easily to
accommodate data records that are slightly more sophisticated than
just integers.

Operations on Binary Heaps

Before we discuss the general operations on binary heaps, let’s
discuss some helper functions that will help us with our array

240 | Priority Queues

representation. We will define functions that will allow us to find
the parent, left child, and right child indexes given the index for
any node in the tree structure. These would be helpful to define for
any tree structure that we wanted to implement using an array. For
this representation, the root will always be at the index 0. These are
given in the figure above, but we will provide them as code here:

Here the floor function is the same as the mathematical
function floor. It rounds down to the next integer.

Heapify and Sift Up

Using the above functions to access positions in our tree, we can
develop two important helper functions that will allow us to modify
the tree and work to maintain our heap properties. These are the
functions heapify and siftUp. When we are building our heap or
modifying the priority of an item, these functions will be useful.
The heapify function will exchange a parent with the larger of its
children and then recursively heapify the subheap. The siftUp
function will exchange a child with its parent to maintain the heap
property by moving larger elements up the heap until it either is
smaller than its parent or becomes the root node element. The
siftUp function will be used when we want to increase the priority

Priority Queues | 241

of an element. Let’s look at the pseudocode for these functions in
the context of an array-based max-heap implementation.

The heapify function below lets a potentially small value
work its way down the max-heap to find its correct place in the
heap ordering of the tree. This code uses a size parameter that gives
the current number of elements in the heap. This code also makes
use of an exchange function like the one discussed in chapter 3 on
sorting. This simply switches the elements of an array using indexes.

Now we will present the siftUp function. This function
works in the reverse direction from heapify. It allows for a node with
a potentially large value to make its way up the heap to the correct
position to preserve the heap property. Since siftUp moves items
toward index 0, the size is not needed. This does assume that the
given index is valid.

With these two helper functions, we can now implement
the methods to insert elements and remove the max-element from
our priority queue. Before we move on though, let’s think about the
complexity of these operations. Each of these methods moves items

242 | Priority Queues

up or down the depths of a binary tree. If the tree could remain
balanced, then a traversal from the top to bottom or bottom to top
should only require O(log n) operations, assuming that the tree is
balanced.

Insertion

Consider inserting the number 8 into the prior binary heap example.
Imagine if we simply added that 8 in the array after the 2 (in position
6).

Figure 9.3

What can we now claim about the state of our binary heap?
Subheaps starting at indexes 1, 3, 4, and 5 are all still valid subheaps
because the heap property is preserved. In other words, our
erroneous insertion of 8 under 4 does not alter the descendants
of these 4 nodes. As a result, we could hypothetically leave these

Priority Queues | 243

subheaps unaltered in our corrected heap. This leaves nodes at
indexes 0 and 2. These are the two nodes that have had their
descendants altered. The heap property between node indexes 2
and 6 no longer holds, so let us start there. If we were to switch
the 4 and 8, we would restore the heap property between those two
indexes. We also know that moving 8 into index 2 will not affect the
heap property between indexes 2 and 5. If 2 was less than 4 and 4
was found to be less than 8, switching the 4 and 8 does not impact
the heap property between indexes 2 and 5. Once the 4 and 8 are
in the correct positions, we know that the subheap starting at index
2 is correct. From here, we simply perform the same operations
on subsequent parents until the next parent’s value is greater than
the value we are trying to insert. Given that we are inserting 8 and
our root node’s value is 12, we can stop iterating at this point. The
pseudocode below is descriptive but much simpler than practical
implementations, which must consider precise data structures for
storing the heap. This provides the general pattern for inserting
into a binary heap regardless of the underlying implementation. We
place the new element at the end of the heap and then essentially
siftUp that element to the place that will preserve the heap
property.

Runtime of insertion is independent of whether the heap is
stored as object references or an array. In either case, we have to
compare n.value to n.parent.value at most O(log n) times. Note that,
unlike the caveat included in binary search trees (where traversing
an unbalanced tree may be as slow as O(n)), binary heaps maintain
their balance by building each new depth level before increasing its
depth. This ensures that an imbalanced binary heap does not occur.
This fact guarantees that our insert operation is O(log n).

244 | Priority Queues

A specific implementation for insert with our array-based
heap is provided below:

Extraction

Extraction is the process of removing the root node of a binary
heap. It works much the same way as insertion but in reverse. The
general strategy is as follows.

To extract an element from the heap…

1. Extract the root element, and prepare to return it.
2. Replace the root with the last element in the heap.
3. Call heapify on the new root to correct any violations of the

heap property.

As an example, consider our corrected heap from before. If
we overwrite our 12 (at index 0) with the last value from the array (4
at index 6), the result will be as follows in figure 9.5. Just as we saw
with insertion, many of our subheaps still have the heap property
preserved. In fact, the only two places where the heap property
no longer holds are from indexes 0 to 1 and 0 to 2. If the value at
the root is less than the maximum value of its two children, then
we swap the root value and that maximum. We will continue this
process of pushing the root value down until the current node is
greater than both children, thus conforming to the heap property.
In this case, we swap the 4 with the 8. The root node conforms to
the heap property because its children are 7 and 4. The node with
value 4 (now at index 2) only has one child (2 at index 5). It conforms
to the heap property, and our extraction is complete.

Priority Queues | 245

Figure 9.4

Figure 9.5

246 | Priority Queues

As before, the pseudocode is much simpler than the actual
implementation.

The array-based implementation could use the heapify
function to give the following code:

While accessing the max-element would only require O(1)
time, updating the heap after it is removed requires a call to heapify.
This function requires O(log n). While not constant time, O(log n)
is a great improvement over our initial naïve implementation ideas
from the introduction. Our initial idea of sorting and then always
copying moving elements up or down would have required O(n)
operations to maintain our priority queue when inserting and
removing elements. The max-heap greatly improves on these
complexity estimates, giving O(log n) for both insert and extract.

Priority Queues | 247

Heap Sort

Heap Sort presents an interesting use of a priority queue. It can be
used to sort the elements of an array. Once insertion and extraction
have been defined, Heap Sort becomes a trivial step. We first build
the heap, then repeatedly extract the maximum element and put it
at the end of the array. Much like Selection Sort, Heap Sort will find
the extreme value, place it into the correct position, then find the
extreme of the remaining values. The trick is in how we perceive the
heap. If we model it using an array, we can then sort the values in
place by extracting the maximum. The extraction makes the heap
smaller by one, but arrays are fixed size and still have the extra
space allocated at the end. This portion at the end of the array
becomes our sorted portion. As we perform more extractions and
move those extracted values to the end of the array, our sorted
portion gets bigger. See the figure below for an example. Unlike
Selection Sort, where finding that extreme value requires an O(n)
findMax or findMin, heaps allow us to extract the extreme value and
revise our heap in O(log n) time. We perform this operation O(n)
times, resulting in an O(n log n) sorting algorithm. The following
figure gives an example execution of the sorting algorithm:

248 | Priority Queues

Figure 9.6

Before we give the implementation of Heap Sort, we should
also mention how to build the heap in the first place. If we are
given an array of random values, there is no guarantee that these
will conform to our requirements of a heap. This is accomplished by
calling the heapify function repeatedly to build valid heaps starting
at the deeper levels of the balanced tree up to the root. Below is
the code for buildHeap, which will take an array of elements to be
sorted and put them into the correct heap ordering:

Priority Queues | 249

It might be unintuitive, but buildHeap is O(n) in its time
complexity. At first glance, we see heapify, an O(log n) operation,
getting called inside a loop that runs from size/2 down to 0. This
might seem like O(n log n). What we need to remember though is
that O(log n) is a worst-case scenario for heapify. It may be more
efficient. As we build the heap up, we start at position size/2. This
is because half of the heap’s elements will be leaves of the binary
tree located at the deepest level. As we heapify the level just before
the leaves, we only need to consider three elements: the parent
and its two leaf children. As heapify runs, the amount of work is
proportional to the height of the subtree it is operating on. Only on
the very last call does heapify potentially visit all log n of the levels of
the tree. We will omit the calculation details, but it has been proven
that O(n) gives a tighter bound on the worst-case time complexity
of buildHeap.

Now we are ready to implement Heap Sort. An
implementation is provided below. Our O(n log n) complexity comes
from calling heapify from the root every time we extract the next
largest value. Another useful feature of this algorithm is that it is
an in-place sorting algorithm. This means the extra space (auxiliary
space) only consumes O(1) space in memory. So Heap Sort compares
favorably to Quick Sort with a better worst-case complexity (O(n
log n) vs. O(n2)), and it offers an improvement over Merge Sort in
terms of its auxiliary space usage (O(1) auxiliary space vs. O(n)). We
should note that Heap Sort may perform poorly in practice due to
cache misses, since traversing a tree skips around the elements of
the array.

This section has provided an overview of heapSort and the

250 | Priority Queues

concept of a heap more generally. Heaps are great data structures
for implementing priority queues. They can be implemented using
arrays or linked data structures. The array implementation also
demonstrates an interesting example of embedding a tree structure
into a linear array. The power and simplicity of heaps make them
a popular data structure. One potential disadvantage of the heap is
that merging two heaps might require O(n) operation. To combine
these two heaps, we would need to create a new array, recopy the
elements, and then call buildHeap, taking O(n) operations. In the
next section, we will discuss a new data structure that supports an
O(log n) union operation.

Binomial Heaps

The binomial heap supports a fast union operation. When two
heaps are given, union can combine them into a new heap
containing all the combined elements from the two heaps. Binomial
heaps are linked data structures, but they are a bit more complex
than linked lists or binary trees. There is an interesting
characteristic to their structure, which models the pattern of binary
numbers, and combining them parallels binary addition. Binary
numbers and powers of 2 seem to pop up everywhere in computer
science. In this section, we will present the binomial heap and
demonstrate how it can provide a fast union operation. Then we will
see how many of the other operations on heaps can be implemented
with clever use of the union function.

Linked Structures of Binomial Heaps

To build our heap, we need to discuss two main structures. The
first part is the binomial tree. Each binomial tree is composed of

Priority Queues | 251

connected binomial nodes. The structure of a binomial tree can
be described recursively. Each binomial tree has a value k that
represents its degree. The degree 0 tree, B0, has one element and
no children. A degree k tree, Bk, has k direct children but 2k nodes
in total. When the Bk tree is constructed, the roots of two Bk−1 trees
are examined. The largest root of the two trees is assigned as the
root of the new tree, assuming a max-binomial-heap. The heap is
then represented as a list of binomial trees. A collection of trees is
known as a forest. The main idea of the binomial is that each heap
is a list of trees, and to combine the two heaps, one just needs to
combine all the trees of equal degree. To facilitate this, the trees are
always ordered by increasing tree degrees. A few illustrations will
help you understand this process a little better.

Figure 9.7

Using these trees, a heap would then be a list of these trees.
To preserve the max-heap property, any node’s priority must be
larger than its child. Below is an example binomial heap. Let’s call
this heapA:

252 | Priority Queues

Figure 9.8

Notice that the maximum element is in B1 tree of this heap.
This illustrates that the actual max-heap element is one of the root
nodes of trees in the list. Now we can make the connection to binary
numbers. This heap will either have a tree of any given degree or
not. This could be indicated by a 0 or 1. So the above heap has a
degree 0 tree, a degree 1 tree, and a degree 3 tree. In binary with
the bits correctly ordered, this would be 10112 or the number 1110

in base 10. Suppose there is another heap, heapB, that we wish to
merge with. This is given below:

Priority Queues | 253

Figure 9.9

This heap has trees for degrees 1 and 2. In binary, we could
represent this pattern as 1102 or the number 610 in base 10. We
will soon look at how these heaps could be merged, but first let’s
consider the process of binary addition for these two binary
numbers: 11 and 6. The figure below gives an example of the
addition:

Figure 9.10

This diagram of binary addition also demonstrates how our
trees need to be combined to create the correct structure for our
unified trees. The following images will show these steps in action.
First, we will merge the two lists into another list (but not a heap
yet). This merge is similar to the merge operation in Merge Sort:

254 | Priority Queues

Figure 9.11

Next, the algorithm will examine two trees at a time to
determine if the trees are the same degree. Any trees that have
an equal degree will be merged. Because the nodes are ordered
by degree, we only need to consider two nodes at a time and
potentially keep track of a carry node.

Priority Queues | 255

Figure 9.12

These nodes are not equal in degree. We can move on.

Figure 9.13

Now we are considering two nodes of equal degree. These
two B1 trees need to become a B2 tree.

256 | Priority Queues

Figure 9.14

After combining the B1 trees, we now have two B2 trees that
need to be combined. This will be done such that the maximum item
of the roots becomes the new root.

Figure 9.15

Again, the “carry” from addition means that we now have

Priority Queues | 257

two B3 trees to merge. This step creates a B4 tree with 24 = 16 nodes.
The final merged heap is below, with one B0 node and one B4 node:

Figure 9.16

Implementing Binomial Trees

To implement Binomial trees, we will need to create a node class
with appropriate links. Again, we will use references, also known
as pointers, for our links. A node—and by extension, a tree—can be
represented with the BinomialTree class below. In this class, Data
would be any entity that needed storing in the priority queue:

258 | Priority Queues

For the BinomialHeap itself, we only need a reference to the
first tree in the forest. This simple pseudocode is presented below:

As we progress toward a complete implementation, we will
build up the operation that we need, working toward the union
operation. Once union is implemented, adding or removing items
from the heap can be implemented through the clever usage of
union. For now, let’s implement the combine and merge functions.

Combining Two Binomial Trees

The combine function is given below. This simple function combines
two Bk−1 trees to create a new Bk tree. This function will make
the first tree a child of the second tree. We will assume that
tree1.priority is always less than or equal to tree2.priority.

The figure below shows how two B2 trees would be
combined to form a B3 tree. This figure also identifies the parent,
sibling, and child links for each node. Links that do not connect
to any other node have the value null. This figure can help you
understand the combine function. We need to maintain these links
in a specific way to make the other operations function correctly.
Notice that the children of the root are all linked together by sibling
links, like a linked list’s next reference.

Priority Queues | 259

Figure 9.17

Another interesting feature of binomial trees is that each
tree of degree k contains subtrees of all the degrees below it. These
are the children linked from the first child of the new tree. For
example, the B3 tree contains a B0, B1, and B2 subtree in descending
order. You can observe these in the figure above. This fact will come
in handy when we implement the extract function for binomial
heaps.

Merging Heaps

Now that we can combine two trees to form a higher-degree tree,
we should implement the mergeHeaps function. This will take both
heaps and their forests of binomial trees and merge them. You can
think of these “forests” as linked lists of binomial trees. Once these
forests are merged, trees of equal degree will be adjacent in the
list. This sets the stage for our “binary addition” algorithm that
will calculate the union of both heaps. The code for mergeHeaps is
below:

260 | Priority Queues

This may look a little difficult to follow, but the concept
is simple. Starting with links to the lists of binomial trees, we first
check to see if any of these are null. If so, we just return the other
one. Afterward, we check which of the nonnull trees has the lowest
degree and set our newHeap’s head to this tree. The while-loop then
appends the tree with the next smallest degree to the growing list.
The loop continues until one of the two lists of trees reaches its end.
After that, the remaining trees are linked to the list by the current
reference, and the head of our merged list is returned. Notice that
the sibling references serve the same role as the next pointers of a
linked list.

Priority Queues | 261

The Binomial Heap Union Operation

Now we will tackle the union function. This function performs the
final step of combining two binomial heaps by traversing the
merged list and combining any pairs of trees that have equal
degrees. The algorithm is given below:

The union function begins by setting up a new, empty heap
and then merging the two input heaps. Once the merged list of trees
is generated, the algorithm traverses the list using three references
(previousTree, currentTree, and nextTree). The code will advance
the traversal forward if currentTree and nextTree have different
degree values. Another case that moves the traversal forward is
when nextTree.sibling has the same degree as currentTree and
nextTree. This is because nextTree and nextTree.sibling will need to
combine to occupy the k + 1 degree level. When a call to combine

262 | Priority Queues

is needed, the algorithm checks which tree has the highest priority,
and that tree’s root becomes the root of the k + 1 tree.

Time Complexity of Union

The union operation is completed, but now we should analyze its
complexity. One of the main reasons for choosing a binomial heap
was its fast union operation. How fast is it though? We will be
interested in the time complexity of union. The algorithm traverses
both heaps for the merge and the sequence combinations. This
means that the complexity is proportional to the number of trees.
We need to determine how many binomial trees are needed to
represent all n elements of the priority queue. Recall that there are
many parallels between binomial heaps and binary numbers. If we
have 3 items in our heap, we need a tree of degree 0 with 1 item and
a tree of degree 1, with 2 items. To store 5 items, we would need a
degree 0 tree with 1 item, and a degree 2 tree with 4 items. Here we
see that the binary representation of n indicates which trees of any
given degree are needed to store those elements. A number can be
represented in binary using a maximum number of bits proportional
to the log of that number. So there are log n trees in a binomial heap
with n elements. This means that the time complexity of union is
bounded by O(log n). By similar reasoning, the time cost for finding
the element with the highest priority is O(log n), the number of
binomial trees in the heap.

Inserting into a Binomial Heap

With union completed, we can see the benefit of this operation.
Below is an implementation of insert using union. The union
operation takes O(log n) time, and all other operations can be

Priority Queues | 263

performed in O(1) time. This makes the time complexity for insert
O(log n).

Extracting the Max-Priority Element

The priority queue would not be complete without a function to
extract the maximum element from the heap. The extract function
takes a bit more work, but ultimately extract executes in O(log
n) time. The maximum priority element must be the root of one
of the heap’s trees. This function will find the maximum priority
element and remove its entire tree from the heap’s tree list. Next,
the children of the max-element are inserted into another heap.
With the two valid heaps, we can now call union to create the
binomial heap that results from removing the highest priority
element. This element can be returned, and the binomial heap will
have been updated to reflect its new state. We note that in this
implementation, there is a side effect of extract. This function
returns the maximum priority element and removes it from the
input heap as a side effect that modifies the input. Another
approach would be to implement an accessMax function to find
the maximum priority element and return it without updating the
heap. This means that extracting the element would require a call
to accessMax to save the element, and then extract would be called.

264 | Priority Queues

We could also consider extracting part of the BinomialHeap class
and avoid passing any heap as input.

Increase-Priority and Delete Operations

We will continue our theme of building new operations by
combining old ones. Here we will present the delete operation. This
operation will make use of extract and increasePriority, which we
will develop next. Creating the increasePriority function will rely
on the parent points that we have been maintaining. When the
priority of an element is increased, it may need to work its way
up the tree structure toward the root. The following code gives an
implementation of increasePriority. We assume for simplicity that

Priority Queues | 265

we already have a link to the element whose priority we want to
increase. The element with the highest priority moves up the tree
just like in the binary heap’s siftUp operation.

Now we can implement delete very easily using the MAX
special value. We increase the element’s priority to the maximum
possible value and then call extract. An implementation of delete is
provided below. Again, we assume that a link to the element we wish
to delete is provided.

The time complexity of delete is derived from the
complexity of increasePriority and extract. Each of these requires
O(log n) time.

A Note on the Name

Before we close this chapter on priority queues, we should discuss

266 | Priority Queues

why these are called binomial heaps. The name “binomial heap”
comes from a property that for a binomial tree of degree k, the
number of nodes at a given depth d is k choose d. This is written as

Summary

In this chapter, we explored one of the most important abstract data
types: the priority queue. This data structure provides a collection
that supports efficient insert and remove operations with the added
benefit of removing elements in order of priority. We looked at
two important implementations. One implementation used an array
and created a binary heap. We also saw that this structure can
be used to implement an in-place O(n log n) sorting algorithm by
simply extracting elements from the queue and placing them in the
sorted zone of the array. Next, we explored the binomial heap’s
implementation. This data structure provides an O(log n) union
operation. Though the implementation of binomial heaps seems
complex, there is an interesting and beautiful simplicity to its
structure. Our union algorithm also draws parallels to the addition
of binary numbers, making it an interesting data structure to study.
Any student of computer science should understand the concept
of priority queues. They form the foundation of some interesting
algorithms. For example, chapter 11 on graphs will present an
algorithm for a minimum spanning tree that relies on an efficient
priority queue. The minimum spanning tree is the backbone of
countless interesting and useful algorithms. Hopefully, by now, you
are beginning to see how data structures and algorithms build on
each other through composition.

Priority Queues | 267

Exercises

1. Implement Heap Sort on arrays in the language of
your choice. Revisit your work from chapter 3 on sorting.
Using your testing framework, compare Heap Sort, Merge
Sort, and Quick Sort. Which seems to perform better on
average in terms of speed? Why would this be the case on
your machine?

2
. What advantages would Heap Sort have over Quick

Sort? What advantages would Heap Sort have over Merge
Sort?

3
. Extend your heap implementation to use

references to data records with a priority variable rather
than just an integer as the priority.

4
. Implement both binomial heaps using linked

structures and binary heaps using an array
implementation. Using a random number generator,
create two equal-sized heaps, and try to merge them. Try
the merge with binomial heaps, and get some statistics
for the merge speed. Compare with the merge speed of
binary heaps with integers. Repeat this process several
times to explore how larger n affects the speed of the rival
heap merge algorithms. The results may not be what you
expect. How might caches play a role in the speed of
these algorithms?

268 | Priority Queues

References

Cormen, Thomas H., Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms, 2nd
ed. Cambridge, MA: The MIT Press, 2001.

Vuillemin, Jean. “A Data Structure for Manipulating
Priority Queues.” Communications of the ACM 21, no. 4
(1978): 309–315.

Priority Queues | 269

10. Dynamic Programming

Learning Objectives

After reading this chapter you will…

• understand the relationship between recursion and
dynamic programming.

• understand the benefits of dynamic programming
for optimization.

• understand the criteria for applying dynamic
programming.

• be able to implement two classic dynamic
programming algorithms.

Introduction

Dynamic programming is a technique for helping improve the
runtime of certain optimization problems. It works by breaking a
problem into several subproblems and using a record-keeping
system to avoid redundant work. This approach is called “dynamic
programming” for historical reasons. Richard Bellman developed the
method in the 1940s and needed a catchy name to describe the
mathematical work he was doing to optimize decision processes.
The name stuck and, perhaps, leads to some confusion. This is
because many terms in computer science have several meanings

270 | Dynamic Programming

depending on the context, especially the terms “dynamic” and
“programming.” In any case, the technique of dynamic programming
remains a powerful tool for optimization. Let’s look deeper into this
concept by exploring its link to problems that can be expressed
recursively.

Recursion and Dynamic Programming

Recursive algorithms solve problems by breaking them into smaller
subproblems and then combining them. Solving the subproblems
is done by applying the same recursive algorithm to the smaller
subproblems by breaking the subproblems into sub-subproblems.
This continues until the base case is reached. Below is a recursive
algorithm from chapter 2 for calculating the Fibonacci numbers:

To solve the problem for fibonacci(n), we need to solve
it for fibonacci(n − 1) and fibonacci(n − 2). We see that there are
subproblems with the same structure as the original problem.

The Fibonacci numbers algorithm is not an optimization
problem, but it can give us some insight to help understand how
dynamic programming can help us. Let’s look at a specific instance
of this problem. The recursive formula for Fibonacci numbers is
given below:

Dynamic Programming | 271

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2.

Now let’s explore calculating the eighth Fibonacci number:

F8=F8−1 + F8−2

=F7 + F6

=(F7−1 + F7−2) + (F6−1 + F6−2)

=(F6 + F5) + (F5 + F4)

=((F6−1 + F6−2) + (F5−1 + F5−2)) + ((F5−1 + F5−2) + (F4−1 +
F4−2))

=((F5 + F4) + (F4 + F3)) + ((F4 + F3) + (F3 + F2))

…and so on.

There are two key thoughts we can learn from this expansion for
calculating F8. The first thought is that things are getting out of
hand and fast! Every term expands into two terms. This leads to
eight rounds of doubling. Our complexity looks like O(2n), which
should be scary. Already at n = 20, 220 is in the millions, and it only
gets worse from there. The second thought that comes to mind in
observing this explanation is that many of these terms are repeated.
Let’s look at the last line again.

272 | Dynamic Programming

Figure 10.1

Already, we see that F4 and F3 are used three times each,
and they would also be used in the expansion of F5 and F4. If we
could calculate each of these just once and reuse the value, a lot
of computation could be saved. This is the big idea of dynamic
programming.

In dynamic programming, a record-keeping system is
employed to avoid recalculating subproblems that have already
been solved. This means that for dynamic programming to be
helpful, subproblems must share sub-subproblems. In these cases,
the subproblems are not independent of one another. There are
some repeated identical structures shared by multiple subproblems.
Not all recursive algorithms satisfy this property. For example,
sorting one-half of an array with Merge Sort does not help you
sort the other half. With Merge Sort, each part is independent of
the other. In the case of Fibonacci, F7 and F6 both share a need to
calculate F1 through F5. Storing these values for reuse will greatly
improve our calculation time.

Dynamic Programming | 273

Requirements for Applying Dynamic
Programming

There are two main requirements for applying dynamic
programming. First, a problem must exhibit the property known as
optimal substructure. This means that an optimal solution to the
problem is constructed from optimal solutions to the subproblems.
We will see an example of this soon. The second property is called
overlapping subproblems. This means that subproblems are shared.
We saw this in our Fibonacci example.

Optimal Matrix Chain Multiplication

A classic application of dynamic programming concerns the optimal
multiplication order for matrices. Consider the sequence of
matrices {M1, M2, M3, M4}. There are several ways to multiply these
together. These ways correspond to the number of distinct ways
to parenthesize the matrix multiplication order. For the
mathematically curious, the Catalan numbers give the total number
of possible ways. For example, one way to group these would be (M1

M2) (M3 M4). Another way could be M1 ((M2 M3) M4). Any grouping
leads to the same final result, but the number of multiply operations
of the overall calculation could differ greatly with different
groupings. To understand this idea, let’s review matrix
multiplication.

Matrix Multiplication Review

Matrix multiplication is an operation that multiplies and adds the

274 | Dynamic Programming

rows of one matrix with the columns of another matrix. Below is an
example:

Figure 10.2

Here we have the matrix A and the matrix B. A is a 2-by-3
matrix (2 rows and 3 columns), and B is a 3-by-2 matrix (3 rows
and 2 columns). The multiplication of AB is compatible, which means
the number of columns of A is equal to the number of rows in the
second matrix, B. When two compatible matrices are multiplied,
their result has a structure where the number of rows equals the
number of rows in the first matrix and the number of columns
equals the number of columns in the second matrix. The process is
the same for compatible matrices of any size.

Implementing Matrix Multiplication

Now let’s consider an algorithm for matrix multiplication. To
simplify things, let’s assume we have a Matrix class or data structure
that has a two-dimensional (2D) array. Another way to think of
a 2D array is as an array of arrays. We could also think of this
as a table with rows and columns. The structure below gives a
general example of a Matrix class. Within this class, we also have

Dynamic Programming | 275

two convenience functions to access and set the values of the
matrix based on the row and column of the 2D array.

With this structure for a Matrix class, we can implement
a matrix multiplication procedure. Below we show the process of
performing matrix multiplication on two compatible matrices:

This function implements the matrix multiplication
procedure described above. On line 12, the new value of the (i, j)
entry in the result matrix is calculated. We see that this involves
a multiply operation and an addition operation. On a typical
processor, the multiply operation is slower than addition. As we
think about the complexity of matrix multiplication, we will mainly
consider the number of multiplications. This is because as the
matrices get large, the cost associated with multiplication will
dominate the cost of addition. For this reason, we only consider the
number of multiplications.

So how many multiplications are needed for matrix

276 | Dynamic Programming

multiplication? The pattern above has a triple-nested loop. This
gives us a clue to the number of times the inner code will run. As
a result, we can expect the number of multiplications to be equal
to the number of times the inner code will run. Let’s assume that
matrix A has ra rows and ca columns, and that matrix B, in a similar
way, has rb rows and cb columns. For A and B to be compatible
matrices, the value of ca would have to be equal to rb. We know that
the inner loop with index k runs a total of ca times. This entire loop
is executed once for every cb of B’s columns (cb * ca). Finally, these
two inner loops for j and k would all run for every row in A, leading
to multiplications proportional to ra * ca * cb. This illustrates that as
the size of the matrices gets larger, the number of multiplications
grows quickly.

Why Order Matters

Now that we have seen how to multiply matrices together and
understand the computational cost, let’s consider just why choosing
to multiply in a specific order is important. Suppose that we need to
multiply three matrices—A, B, and C—shown in the image below:

Figure 10.3

Multiplying them together could proceed with the

Dynamic Programming | 277

grouping (AB)C, where A and B are multiplied together first, and
then that result is multiplied by C. Alternatively, we could group
them as A(BC) and first multiply B by C, followed by A multiplied by
the result. Which would be better, or would it even matter?

Let’s figure this out by first considering the A(BC) grouping.
The figure below illustrates this example. With this grouping,
calculating the BC multiplication yields 20,000 multiply operations.
Multiplying A by this result gives another 10,000 for a total of 30,000
multiply operations.

Figure 10.4

Next, let’s consider the (AB)C grouping. The following figure
shows a rough diagram of this calculation. The AB matrix
multiplication gives a cost of 1,000 multiply operations. Then this
result multiplied by C gives another 5,000. We now have a total of
6,000 multiply operations for the (AB)C grouping over the other.
This represents a fivefold decrease in cost!

278 | Dynamic Programming

Figure 10.5

This example illustrates that the order of multiplication
definitely matters in terms of computational cost. Additionally, as
the matrices get larger, there could be significant cost savings when
we find an optimal grouping for the multiplication sequence.

A Recursive Algorithm for Optimal
Matrix-Chain Multiplication

We are interested in an algorithm for finding the optimal ordering of
matrix multiplication. This corresponds to finding a grouping with
a minimal cost. Suppose we have a chain of 5 matrices, M0 to M4.
We could write their dimensions as a list of 6 values. The 6 values
come from the fact that each sequential pair of matrices must be
compatible for multiplication to be possible. The figure below shows
this chain and gives the dimensions as a list.

Dynamic Programming | 279

Figure 10.6

An algorithm that minimizes the cost must find an optimal
split for the final two matrices. Let’s call these final two matrices A
and B. For the result to be optimal, then A and B must both have
resulted from an optimal subgrouping. The possible splits would be

(M0) (M1 M2 M3 M4) = AB with a split after position 0

(M0 M1) (M2 M3 M4) = AB with a split after position 1

(M0 M1 M2) (M3 M4) = AB with a split after position 2

(M0 M1 M2 M3) (M4) = AB with a split after position 3.

We need to evaluate these options by assessing the cost
of creating the A and B matrices (optimal subproblems) as well as
the cost of the final multiply, with matrix A being multiplied by B.
A recursive algorithm would find the minimal cost by checking the
minimum cost among all splits. In the process of finding the cost
of all these four options for splits, we would need to calculate the
optimal splits for other sequences to find their optimal groupings.
This demonstrates the feature of optimal substructure, the idea
that an optimal solution could be built from optimal subproblems.

280 | Dynamic Programming

For the first grouping, we have A = M0 and B = (M1 M2 M3

M4). To calculate the cost of this split, it is assumed that A and
B have been constructed optimally. This means that a recursive
algorithm considering this split must then make a recursive call to
find the minimal grouping for (M1 M2 M3 M4) for the B matrix. This in
turn would trigger another search for the optimal split among (M1)
(M2 M3 M4) (M1 M2) (M3 M4) and (M1 M2 M3) (M4). We can also see
that this would trigger further calls to optimize each sequence of 3
matrices and so on. You may be able to imagine that this recursive
process has a high branch factor leading to an exponential runtime
complexity in the number of matrices. With n matrices, the runtime
complexity would be even worse than O(2n), exponential time. It
would follow an algorithm for calculating the Catalan numbers at
O(3n).

A general outline of the recursive algorithm would be as
follows. We will consider an algorithm to calculate the minimal
cost of multiplying a sequence of matrices starting at some matrix
identified by the start index and including the ending matrix using
an end index. The base case of the algorithm is when start and end
are equal. The cost of multiplication of only one matrix is 0 as there
is no operation to perform. The recursive case calculates the cost of
splitting the sequence at some split position. There will be n − 1 split
positions to test when considering n matrices where n = end − start
+ 1, and the recursive algorithm will need to find the minimum of the
options for the best split position.

To complete the recursive algorithm, we will introduce a
function to calculate the cost of the final multiplication. This could
be a simple multiplication of the correct dimensions, but we will
introduce and explain this function to make the meaning clear and
to simplify some of the code (which would otherwise include a lot
of awkward indexing). The figure below illustrates what is meant by
the final multiplication:

Dynamic Programming | 281

Figure 10.7

Suppose we are calculating the number of multiplications
for a split at index 1 (or just after M1). The algorithm would have
given the optimal cost for constructing the left matrix and the right
matrix, but we would still need to calculate the cost of multiplying
those together. The left matrix would have dimensions of d0 by d2

and the right matrix would have dimensions of d2 by d5. Using the
dimensions list and indexes for start, split, and end, we can calculate
this cost. The function below performs this operation in a way that
might make the meaning a little clearer. Notice that for matrix i, the
dimensions of that matrix are di by di+1.

With this helper function, we can now write the recursive
algorithm.

282 | Dynamic Programming

This algorithm only calculates an optimal cost, but it could
be modified to record the split indexes of the optimal splits so that
another process could use that information. The optimal cost of
multiplying all matrices in the optimal grouping could be calculated
with a call to recursiveChainOpt(dimensions, 0, 4). This algorithm,
while correct, suffers from exponential time complexity. This is the
type of situation where dynamic programming can help.

A Dynamic Programming Solution

Let’s think back to our precious example for a moment. Think
specifically about the first two groupings we wanted to consider.
These are (M0) (M1 M2 M3 M4) and (M0 M1) (M2 M3 M4). For the
first grouping, we need to optimize the grouping of (M1 M2 M3 M4)
as a subproblem. This would involve also considering the optimal
grouping of (M2 M3 M4). Optimally grouping (M2 M3 M4) is a problem
that must be solved in the process of calculating the cost of (M0

M1) (M2 M3 M4), which is the second subproblem in the original
grouping. From this, we see that there are overlapping
subproblems. Considering this problem meets the criteria of
optimal substructure and overlapping subproblems, we can be
confident that dynamic programming will give us an advantage.

The logic behind the dynamic programming approach is
to calculate the optimal groupings for subproblems first, working

Dynamic Programming | 283

our way through larger and larger subsequences and saving their
optimal cost. Eventually, the algorithm minimizes the cost of the
full sequence of matrix multiplies. In this calculation, the algorithm
queries the optimal costs of the smaller sequences from a table. This
algorithm uses two tables. The first table, modeled using a 2D array,
stores the calculated optimal cost of multiplying matrices i through
j. This table will be called costs. The second table holds the choice
of split index associated with the optimal cost. This table will be
called splits. While the algorithm calculates costs, the splits are the
important data that can be used to perform the actual multiplication
in the right order.

The algorithm is given below. It begins by assigning the
optimal values for a single matrix. A single matrix has no multiplies,
so when calculating a matrix chain multiplication with a sequence of
1, the cost is 0. Next, the algorithm sets a sequence length starting
at 2. From here, start and end indexes are set and updated such
that the optimal cost of all length 2 sequences in the chain are
calculated and stored in the costs table. Next, the sequence length is
increased to 3, and all optimal sequences of length 3 are calculated
by trying the different options for the splitIndex. The splitIndex is
updated in the splits table each time an improvement in cost is
found. We should note that we again make use of the MAX value,
which acts like infinity as we minimize the cost for a split. The
process continues for larger and larger sequence lengths until it
finds the cost of the longest sequence, the one including all the
matrices.

284 | Dynamic Programming

Complexity of the Dynamic Programming
Algorithm

Now we have seen two algorithms for solving the optimal matrix
chain multiplication problem. The recursive formulation proved to
be exponential time (O(2n)) with each recursive call potentially
branching n − 1 times. The dynamic programming algorithm should
improve upon this cost; otherwise, it would not be very useful.
One way to reason about the complexity is to think about how the
tables get filled in. Ultimately, we are filling in about one-half of a
2D array or table. This amounts to filling in the upper triangular
portion of a matrix in mathematical terms. Our table is n by n,
and we are filling in n(n+1)/2 values (a little over half of the n-by-
n matrix). So you may think the time complexity should be O(n2).
This is not the full story though. For every start-end pair, we must
try all the split indexes. This could be as bad as n − 1. So all these
pairs need to evaluate up to n − 1 options for a split. We can reason
that this requirement would lead to some multiple of n2*n or n3

operations. This provides a good explanation of the time complexity,
which is O(n3). This may seem expensive, but O(n3) is profoundly
better than O(3n). Moreover, consider the difference between the

Dynamic Programming | 285

number matrices and the number multiplications needed for the
chain multiplication. For our small example of 3 matrices (our n in
this case), we saw the number of multiply operations drop by 24,000
when using the optimal grouping, and our n was only 3. This could
result in a significant improvement in the overall computation time,
making the optimization well worth the cost.

Longest Common Subsequence

Another classic application of dynamic programming involves
detecting a shared substructure between two strings. For example,
the two strings “pride” and “ripe” share the substring “rie.” For these
two strings, “rie” is the longest common subsequence or LCS. There
are other subsequences, such as “pe,” but “rie” is the longest or
optimal subsequence. These subsequence strings do not need to be
connected. They can have nonmatched characters in between. It
might seem like a fair question to ask, “Why is this useful?” Finding
an LCS may seem like a simple game or a discrete mathematics
problem without much significance, but it has been applied in the
area of computational biology to perform alignments of genetic
code and protein sequences. A slight modification of the LCS
algorithm we will learn here was developed by Needleman and
Wunsch in 1970. That algorithm inspired many similar algorithms
for the dynamic alignment of biological sequences, and they are still
empowering scientific discoveries today in genetics and biomedical
research. Exciting breakthroughs can happen when an old
algorithm is creatively applied in new areas.

286 | Dynamic Programming

Defining the LCS and Motivating Dynamic
Programming

A common subsequence is any shared subsequence of two strings. A
subsequence of a string would be any ordered subset of the original
sequence. An LCS just requires that this be the longest such
subsequence belonging to both strings. We say “an” LCS and not
“the” LCS because there could be multiple common subsequences
with the same optimal length.

Let’s add some terms to better understand the problem.
Suppose we have two strings A and B with lengths m and n,
respectively. We can think of A as a sequence of characters A = {a0,
a1, …, am−1} and B as a sequence of the form B = {b0, b1, …, bn−1}.
Suppose we already know that C is an LCS of A and B. Let’s let k be
the length of C. We will let Ai or Bi mean the subsequence up to i, or
Ai = {a0, a1, …, ai}. If we think of the last element in C, Ck−1 must be in
A and B. For this to be the case, one of the following must be true:

1. ck−1 = am−1 and ck−1 = bn−1. This means that am−1 = bn−1 and Ck−2

is an LCS of Am−2 and Bn−2.
2. am−1 is not equal to bn−1, and ck−1 is not equal to am−1. This must

mean that C is an LCS of Am−2 and B.
3. am−1 is not equal to bn−1, and ck−1 is not equal to bn−1. This must

mean that C is an LCS of A and Bn−2.

In other words, if the last element of C is also the last
element of A and B, then it means that the subsequence Ck−2 is
an LCS of Am−2 and Bn−2. This is hinting at the idea of optimal
substructure, where the full LCS could be built from the Ck−2

subproblem. The other two cases also imply subproblems where an
LCS, C, is constructed from either the case of Am−2 (A minus its last
element) and B or the case of A and Bn−2 (B minus its last element).

Now let’s consider overlapping subproblems. We saw that
our optimal solution for an LCS of A and B could be built from an

Dynamic Programming | 287

LCS of Am−2 and Bn−2 when the last elements of A and B are the
same. Finding an LCS of Am−2 and Bn−2 would also be necessary
for our other two cases. This means that in evaluating which of
the three cases leads to the optimal LCS length, we would need to
evaluate the LCS of Am−2 and Bn−2 subproblems and potentially many
other shared problems with shorter subsequences. Now we have
some motivation for applying dynamic programming with these two
properties satisfied.

A Recursive Algorithm for Longest Common
Subsequence

Before looking at the dynamic programming algorithm, let’s
consider the recursive algorithm. Given two sequences as strings,
we wish to optimize for the length of the longest common
subsequence. The algorithm below provides a recursive solution
to the calculation of the optimal length of the longest common
subsequence. Like with our matrix chain example, we could add
another list to hold each element of the LCS, but we leave that as an
exercise for the reader.

This algorithm will report the optimal length using a

function call with the last valid indexes (length − 1) of each string
provided as the initial index arguments. For example, letting A be

288 | Dynamic Programming

“pride” and B be “ripe,” our call would be recursiveLCS(A, B, 4, 3),
with 4 and 3 being the last valid indexes in A and B. Trying to
visualize the call sequence for this recursive algorithm, we could
image a tree structure that splits into two branches each time the
else block is executed on line 7. In the worst case, where there are
no shared elements and the length of an LCS is 0, this means a new
branch generates 2 more branches for every n elements (assuming
n is larger than m). This leads to a time complexity of O(2n).

A Dynamic Programming Solution

In a similar way to the matrix chain algorithm, our dynamic
programming solution for LCS makes use of a table to record the
length of the LCS for a specific pair of string indexes. Additionally,
we will use another “code” table to record from which optimal
subproblem the current optimal solution was constructed.

The following dynamic programming solution tries to find
LCS lengths for all subsequences of the input strings A and B. First,
a table, or 2D array, is constructed with dimensions (n+1) by (m+1).
This adds an extra row and column to accommodate the LCS of
a sequence and an empty sequence or nothing. A string and the
empty string can have no elements in common, so the algorithm
initializes the first row and column to zeros. Next, the algorithm
proceeds by attempting to find the LCS length of all subsequences
of string A and the first element of string B. For any index pair (i,
j), the algorithm calculates the LCS length for the two subsequence
strings Aj and Bi.

The core of the algorithm checks the three cases discussed
above. These are the case of a match among elements of A and B and
two other cases where the problem could be reformulated as either
shortening the A string by one or shortening the B string by one. As
the algorithm decides which of these options is optimal, we record
a value into our “code” table that tells us which of these options was

Dynamic Programming | 289

chosen. We will use the code “D,” “U,” and “L” for “Diagonal,” “from
the Upper entry,” and “from the Left entry.” These codes will allow
us to easily traverse the table by moving “diagonal,” “up,” or “left,”
always taking an optimal path to output an LCS string. Let’s explore
the algorithm’s code and then try to understand how it works by
thinking about some intermediate states of execution.

To better understand the algorithm, we will explore our
previous example of determining the LCS of “pride” and “ripe.” Let
us imagine that the algorithm has been running for a bit and we
are now examining the point where indexB is 2 and indexA is 4. The
figure below gives a diagram of the current states of the lengths and
codes tables at this point in the execution:

290 | Dynamic Programming

Figure 10.8

These tables can give us some intuition on how the
algorithm works. Looking at the lengths table in row 2 and column
2, we see there is a 1. This represents the LCS of the strings “pr” and
“ri.” They share a single element “r.” Moving over to the cell found
in row 2 and column 3, we see the number 2. This represents the
length of the LCS of the strings “pri” and “ri.” Now the algorithm is
considering the cell in the row 2 column 4 position. The strings in
these positions do not match, so this is not built from the LCS along
the diagonal. The largest LCS value from the previous subproblems
is 2. This means that the LCS of “prid” and “ri” is the same as the
LCS of the shortened A string “pri” and “ri.” Since this is the case,
we would mark a 2 at this position in the lengths table and make an
“L” in this position in the codes table. These algorithms take time to
understand fully. Don’t get discouraged if it doesn’t click right away.
Try to implement it in your favorite programming language, and
work on some examples by hand. Eventually, it will become clear.

Dynamic Programming | 291

Extracting the LCS String

Before we move on to the complexity analysis, let’s discuss how to
read the LCS from the codes table. Depending on the design of your
algorithm, you may be able to extract the LCS just from the strings
and the lengths table, and the codes table could be omitted from the
algorithm completely. We would like to keep things simple though,
so we will just use the codes table. The algorithm below shows one
method for printing the LCS string (in reverse order):

Complexity of the Dynamic Programming
Algorithm

Now that we have seen the algorithm and an example, let’s consider
the time complexity of the algorithm. The nested loops for the A
and B indexes should be a clue. In the worst case, all increasing
subsequences of each input string need to be compared. The
algorithm fills every cell of the n-by-m table (ignoring the first row
and column of zeros, which are initialized with a minor time cost).
This gives us n * m cells, so the complexity of the algorithm would
be considered O(mn). It might be reasonable to assume that m and
n are roughly equal in size. This would lead to a time complexity of
O(n2). This represents a huge cost savings over the O(2n) time cost
of the recursive algorithm.

292 | Dynamic Programming

The space complexity is straightforward to calculate. We
need two tables, each of size n+1 by m+1. So the space complexity
would also be O(m*n), or, assuming m is roughly equal to n, O(n2).

A Note on Memoization

A related topic often appears in discussions of dynamic
programming. The main advantage of dynamic programming comes
from storing the result of costly calculations that may need to be
queried later. The technique known as memoization does this in an
elegant way. One approach to memoization allows for a function to
keep a cache of tried arguments. Each time the function is called
with a specific set of arguments, the cache can be queried to see if
that result is known. If the specific combination of arguments has
been used before, the result is simply returned from the cache. If
the arguments have not been seen before, the calculation proceeds
as normal. Once the result is calculated, the function updates the
cache before returning the value. This will save work for the next
time the function is called with the same arguments. The cache
could be implemented as a table or hash table.

The major advantage of memoization is that it enables the
use of recursive style algorithms. We saw in chapter 2 that recursion
represents a very simple and clear description of many algorithms.
Looking back at the code in this chapter, much of it is neither
simple nor clear. If we could have the best of both worlds, it would
be a major advantage. Correctly implementing memoization means
being very careful about variable scope and correctly updating the
cache when necessary to make sure the optimal value is returned.
You must also be reasonably sure that querying your cache will be
efficient.

Dynamic Programming | 293

Summary

Dynamic programming provides some very important benefits
when used correctly. Any student of computer science should be
familiar with dynamic programming at least on some level. The
most important point is that it represents an amazing reduction in
complexity from exponential O(2n) to polynomial time complexity
O(nk) for some constant k. Few if any other techniques can boast of
such a claim. Dynamic programming has provided amazing gains in
performance for algorithms in operations research, computational
biology, and cellular communications networks.

These dynamic programming algorithms also highlight the
complexity associated with implementing imperative solutions to a
recursive problem. Often writing the recursive form of an algorithm
is quite simple. Trying to code the same algorithm in an imperative
or procedural way leads to a lot of complexity in terms of the
implementation. Keeping track of all those indexes can be a big
challenge for our human minds.

Finally, dynamic programming illustrates an example of the
speed-memory trade-off. With the recursive algorithms, we only
need to reserve a little stack space to store some current index
values. These typically take up only O(log n) memory on the stack.
With dynamic programming (including memoization styles), we
need to store the old results for use later. This takes up more and
more memory as we accumulate a lot of partial results. Ultimately
though, having these answers stored and easily accessible saves a
lot of computation time.

Exercises

294 | Dynamic Programming

1. Think of some other recursive algorithms that you
have learned. Do any of them exhibit the features of
optimal substructure and overlapping subproblems?
Which do, and which do not?

2
. Try to implement the dynamic programming

algorithm for optimal matrix chain multiplication. Next,
implement a simple procedure that calculates the cost of
a naïve matrix multiplication order that is just a typical
left-to-right multiplication grouping. Randomly generate
lists of dimensions, and calculate the costs of optimal vs.
naïve. What patterns do you observe? Are there features
of matrix chains that imply optimizations?

3
. Try to implement a recursive function to print the

optimal parenthesization of the matrix multiplication
chain given the splits table. Hint: Accept a start and end
value, and for each split index s (splits[start][end]),
recursively call the function for (start, s) and (s + 1, end).

4
. Implement the recursive LCS algorithm in your

language of choice, and extend it to report the actual LCS
as a string. Hint: You may need to use a data structure to
keep track of the current LCS elements.

5
. Extend the LCS algorithm to implement an

alignment algorithm for genetic code (strings containing
only {“a,” “c,” “g,” “t”} elements). This could be done by
adding a scoring system. When the algorithm assesses a
diagonal, check if it is a match (exact element) or a
mismatch (elements are not the same). Calculate an
optimal score using the following rules: Matches get +2,

Dynamic Programming | 295

mismatches get −1, moving left or up counts as a “gap” and
gets −2. Calculate the optimal alignment score using this
method for the strings “acctg” and “gacta.”

References

Bellman, Richard. Eye of the Hurricane. World
Scientific, 1984.

Cormen, Thomas H., Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms, 2nd
ed. Cambridge, MA: The MIT Press, 2001.

Needleman, Saul B., and Christian D. Wunsch. “A
General Method Applicable to the Search for Similarities
in the Amino Acid Sequence of Two Proteins.” Journal of
Molecular Biology 48, no. 3 (1970): 443–453.

296 | Dynamic Programming

11. Graphs

Learning Objectives

After reading this chapter you will…

• understand graphs as a mathematical structure.
• be able to traverse graphs using well-known

algorithms.
• learn the scope of problems that can be addressed

using graphs.

Introduction

Graphs are perhaps the most versatile data structure addressed in
this book. As discussed in chapter 8, graphs at their simplest are
just nodes and edges, with nodes representing things and the edges
representing the relationships between those things. However, if we
are creative enough, we can apply this concept to the following:

• roads between cities
• computer networks
• business flow charts
• finite state machines
• social networks
• family trees

Graphs | 297

• circuit design

If we can represent a given problem using a graph, then we
have access to many well-known algorithms to help us solve that
problem. This chapter will introduce us to graphs as well as some of
these algorithms.

Brief Introduction to Graphs

A formal introduction to graphs may be found in most discrete
math textbooks. The purpose of this section is not to provide such
an introduction. Rather, we will focus more on the data structures
used to represent graphs and the algorithms associated with them.
Regardless, some basic vocabulary will prove useful.

Nodes are the primary objects under consideration in
graphs. They are associated with other nodes by means of edges.
Each edge is incident to two nodes. We define adjacent nodes of
a given node as alternate nodes of incident edges. Adjacent nodes
are sometimes referred to as neighbors. The degree of a node is
the number of its incident edges or adjacent nodes (not including
the node itself). Our depiction of graphs will look much like our
depiction of trees. This should come as no surprise because, if you
recall, trees are a special case of graphs.

If you cross-reference this chapter against more
mathematically focused textbooks (which is strongly encouraged),
you will find that some of these definitions vary. In particular,
mathematical textbooks typically refer to nodes as vertices. They
are also more precise in mathematical notation. For example, this
chapter will use the symbol N to denote the number of nodes in the
graph. In a mathematics context, the set of nodes is represented as
set V and the number of nodes as |V| (or the cardinality of V).

Paths and cycles will play a large role in our graph
algorithms. A path is some sequence of edges that allows you to

298 | Graphs

travel from one node to another. A cycle is a path that starts and
ends at the same node. Sometimes cycles are useful, but they often
represent challenges in graph algorithms. Failing to detect a cycle
in graph algorithms often results in implementations falling into
endless loops.

Figure 11.1

We will often need to consider whether a graph is directed
or undirected. A directed graph is one in which each edge goes in
a single direction. A network of flights across the United States is
probably directed because every flight from city A to city B does not
necessarily have a flight back from city B to city A. An undirected
graph implies that we could traverse each edge in either direction. A
network of roads between towns is likely undirected because most
roads permit travel in both directions. If you reframe the network
of roads, you could describe each lane as an edge, resulting in a
directed graph. In our visual depictions of graphs, you will know
whether a graph is directed or undirected by the use of arrows. Of
the graphs below, the left graph represents an undirected graph,
and the right represents a directed graph:

Graphs | 299

Figure 11.2

Another distinction we make will be between weighted and
unweighted graphs. Weighted graphs have a numerical value
associated with each edge, which represents the weight of that
edge. For example, roads between cities have distances, and
computer networks have measures of latency. Some graphs have
no meaningful numerical value for edges and are considered
unweighted. For example, social networks may have no meaningful
weight for the relationship between two people. Much of this
chapter will focus on graphs that are both weighted and directed.

Representations of Graphs

In a discrete math class, these graphs would be represented with
basic set notation. We, however, have the additional burden of
needing to represent this in a machine-readable format. Two main
strategies exist for representing graphs in data structures, but there
are numerous variations on these. We may choose to modify or
augment these structures depending on the specific problem,

300 | Graphs

language, or computing environment. For simplicity, we will only
address the two main strategies.

Adjacency Matrices

An adjacency matrix is typically conceptualized as a table where the
count of both rows and columns is equal to the number of nodes in
the graph. Each row is assigned a node identifier, and each column
is also assigned a node identifier. To determine whether an edge
exists from node A to node B, we find the row for A and cross-
reference B. The information in that cell of the table then provides
information regarding the nature of the edge from A to B. Consider
the following example:

Figure 11.3

Notice that all we have asserted so far is that the
intersection of the row and column supplies information about the
nature of the edge. The data we store at each intersection depends

Graphs | 301

on the type of graph we are modeling. Some considerations for
adjacency matrices include the following:

• Weighted or Unweighted: If the graph is weighted,
intersections will store the weight of the edge as some
numeric type. In unweighted graphs, the intersection simply
stores whether the edge exists.

• Directed or Undirected: If the graph is undirected, each
nondiagonal intersection stores redundant information with
exactly one other cell. For example, if an undirected graph has
an edge between A and B, then the (A, B) intersection stores
the same information as (B, A). On occasion, this may be
desirable or undesirable. Naturally, a directed graph would
store nonredundant information in each cell.

• Node Identities: The most logical choice for an underlying data
structure would be a two-dimensional array. To leverage the
constant-time lookups, we must provide an integer identifier
for each node.

• Existence of Edges: Regardless of the points above, we must
determine how to indicate that no edge exists. While many
modern languages have some concept of a nullable type, you
may not always want to use it. Particularly, nullable types often
come with an implied increase in storage size (it may take 32
bits to store an integer, but storing an integer along with
whether it exists is more information and consequently more
bits). As a result, we might, by convention, choose a value to
store in the matrix that indicates that no edge exists. Most
weighted graphs in the natural world have strictly positive
weights, so storing a −1 may serve as a useful indicator for a
nonexistent edge. When working with an unweighted graph,
simple 0s and 1s or true and false will suffice.

302 | Graphs

Adjacency Lists

If we perceive an adjacency matrix as a square table of edge
information, an adjacency list is a jagged list of lists. The primary
list has one entry for each node in the graph. Each of those entries
then points to a list of adjacent nodes. The size of each secondary
list depends on the degree of that node. Using the same graph as we
used for adjacency matrices, we have the following adjacency list.

Figure 11.4

This is how adjacency lists are often portrayed visually, but
we should note that the word “list” is in reference to the abstract
data type list rather than a linked list. Also note that while the
primary list clearly stores nodes, the secondary lists effectively
store edges.

The list of lists nature of adjacency lists may be
implemented in numerous ways. Considerations for concrete
implementations include the following:

• Weighted or Unweighted: Weighted graphs require each entry
in the secondary lists to store both the adjacent node’s identity
and that edge’s weight. For this reason, we cannot store simple
primitive types in each secondary entry. This implies that we

Graphs | 303

will likely need some kinds of composite types such as objects
or structs. Unweighted graphs are easily stored using the
identity of the node and may not require additional types.

• Directed or Undirected: As with adjacency matrices,
undirected graphs tend to lead toward redundancy in data. If
an undirected graph has an edge between A and B, then A’s
secondary list stores a reference to B, and B’s secondary list
stores a reference to A. Directed graphs have no such concern.

• Underlying Data Structures: As with adjacency matrices, it may
be convenient to identify each node using an integer. This
allows us to leverage constant-time lookups when looking for
nodes in primary or secondary lists. Unlike adjacency matrices,
using arrays for secondary lists may pose additional challenges
if edges are frequently added or removed (due to the fixed size
of arrays).

Algorithms

Much like our discussion of trees, graph algorithms could consume
chapters of a textbook. Rather than a broad survey of problems and
known algorithms, we will address only three specific problems.

Traversal

Two frequent questions with graphs are (1) how we can visit each
node and (2) if we can find a path between two nodes. They arise
whenever we want to broadcast on a network, find a route between
two cities, or help a virtual actor through a maze. We rely on two
related algorithms to accomplish this task: breadth first traversal
and depth first traversal. If we wish to perform a search, we simply
terminate the traversal once the target node has been located.

304 | Graphs

Both algorithms depend on knowing some start node. If we
are attempting to traverse all nodes, a start node may be chosen
arbitrarily. If we wish to find a path from one node to another, we
obviously must choose our start node deliberately. Both algorithms
work from the same basic principle: if we wish to visit every node
originating from some start node, we first visit its neighbors, its
neighbors’ neighbors, and so on until all nodes have been visited.
The primary distinction between both is the order in which we
consider the next node. Breadth first spreads slowly, favoring nodes
closest to the start node. Depth first reaches as deep as possible
quickly. Below are examples of both traversals. Note that there is
no unique breadth first or depth first traversal, but rather they
are dependent on a precise implementation. The examples below
represent possible traversals. There are other possibilities.

Figure 11.5

Note the difference in these traversals. Because breadth

Graphs | 305

first starting from A will consider all A’s neighbors first, we will
encounter C before we encounter F. Depth first will instead
prioritize B’s neighbors before completing all of A’s neighbors. As a
result, depth first reaches F before breadth first does.

In addition to the order in which we visit neighbors, we
must also pay close attention to cycles. Recall that cycles are paths
that start and end at the same node. In the depth first example
above, what happens when we finally visit C only to find its neighbor
is A? If we fail to recognize this as a cycle, we will again traverse
A B D F E C and continue to do so indefinitely. We must avoid
visiting already visited nodes. We will need to incorporate this into
the algorithm as well.

Below is the pseudocode for a breadth first traversal. The
function call Visit is simply a placeholder for some meaningful
action you might take at each node (the simplest of which is simply
printing the node identifier). It also assumes that node identifiers
are integers.

Consider the above pseudocode along with figure 11.5.
Assume a mapping from the letters A–F to integers 1–6, respectively.
We first enqueue A. The queue is not empty, so we dequeue A. We
have not yet visited it, so we visit, mark as visited, then enqueue the
neighbors (B and C). In the case of breadth first, these two nodes
were enqueued before D, E, and F. As a result, B and C will be visited
before D, E, and F.

Also note the utility of the visited array. We visit a node,

306 | Graphs

mark it as visited, then enqueue its neighbors. Once we have visited
a node and enqueued its neighbors, the conditional on line 9 will
prevent us from doing the same again. This is our mechanism for
avoiding cycles.

This pseudocode describes a breadth first traversal but
only requires a nominal change to make it a depth first traversal.
Recall that after we visited A, we visited B and C. This was due to
the first-in-first-out nature of queues. Consider what happens if
we swap our queue for a stack. We visit A and now push B and C.
C was the last node pushed, so a pop returns it. We then push A
and E, which will eventually be popped before B. As a result, we
prioritize nodes deep in the graph before ever considering B. In fact,
we eventually consider B due to its adjacency to D rather than its
adjacency to A.

Three aspects of graph algorithms make runtime analysis
difficult. Because of these challenges, runtime analysis in this
chapter will be less precise than in others but still descriptive as to
roughly how much effort is required to perform the task at hand.

• We are typically working with two variables: count of nodes
and count of edges. In the case of breadth first traversal, we
can see that we will only visit each node once. We also
enqueue and dequeue once for each edge (plus an additional
enqueue/dequeue for the start node). This gives us a runtime
of O(N + E), where N is the number of nodes and E is the
number of edges.

• Analysis can be confusing because the upper bound of E is
O(N2). An explanation of why can be found in Discrete
Mathematics: An Open Introduction (found in the references for
this chapter). There the author explains how the number of
edges in a complete graph relates to the number of nodes. The
explanation closely resembles the justification for O(N2)
runtime of selection and Insertion Sort. Because of these two
aspects, we can correctly say O(N+E) or O(N2), the choice of
which is typically dependent on the current context. If we

Graphs | 307

know that the number of edges is relatively low compared to
the number of nodes, then use the sum of the two. If we know
the graph to be highly connected, it is better to recognize the
runtime as quadratic.

• Algorithms are typically presented conceptually without
regard to precise implementations of graphs or auxiliary data
structures. For example, if we are working in an object-
oriented system, we may leverage adjacency lists, which limit
our ability to perform constant-time indexing into the adjacent
nodes. If we have no mapping from nodes to integers, we may
have to perform Linear Searches to determine if nodes have
been visited.

Single Source Shortest Path

While breadth first and depth first searches provide a path from
a source to a destination, they do not guarantee an efficient path.
Accomplishing such a task requires that the algorithm consider the
weights of the edges that it traverses as well as the cumulative
weights of edges already traversed. Numerous algorithms exist to
find the shortest path from one node to another, but this section
will focus on Edgar Dijkstra’s algorithm.

Dijkstra’s algorithm determines the shortest path between
a source and destination node by maintaining a list of minimum
distances required to reach each node already visited by the
algorithm. It is an example of a greedy algorithm. This is a general
strategy employed in algorithms, akin to the divide-and-conquer
strategy employed in Binary Search or Merge Sort. Greedy
algorithms make locally optimal choices that trend toward globally
optimal solutions. In the case of Dijkstra’s (and Prim’s to follow), we
only consider a single node at a time and use the information at
that location in the graph to update the global state. If we carry this
strategy out in clever ways, we can indeed determine the shortest

308 | Graphs

path between two nodes without each step considering the entire
graph.

In the following graph, consider finding the shortest path
from A to D. Note that in the initial state, we acknowledge that the
distance from the source node to itself is 0. This is analogous to
enqueuing or pushing the source node in breadth first and depth
first traversals. The primary control flow will again be a loop, which
selects the next node to consider. Initializing some state again
provides the loop with a logical place to begin. Also note that we
maintain predecessors for each node whenever we update the
distance to that node. This helps traverse the shortest path after the
algorithm has been completed.

Figure 11.6

Now that we have some predefined state, we will begin our
iteration to update the distance and predecessor arrays with the
best information we know so far. Given the nodes we have visited
so far (namely, A), we know we can reach B with a weight of 4
and predecessor node A. We can also reach C with weight 6 and
predecessor node A. Note here that we are not claiming that the
edge AB is the shortest path from A to B or that AC is the shortest

Graphs | 309

path from A to C. What we are claiming is that of the nodes visited
so far, the minimum weight paths to B or C are 4 and 6, respectively.
We then start the next iteration by carefully choosing the next node
to visit. It should be one that has not yet been visited so that we do
not create cycles. Additionally, regarding the shortest path, we must
choose the next node based on which has the minimum distance
from the starting node. We then repeat this process until each node
is visited or we reach some desired destination node.

Figure 11.7

310 | Graphs

As with breadth first and depth first traversals, the precise
runtime cannot be determined without specifying exactly how
visited, distance, predecessors, and edges are structured. What we
can determine with certainty is that the while-loop will iterate the
same number of times as the number of nodes in the graph. This is
evident because each iteration marks a node as visited, and the loop
terminates when all nodes are visited. Assuming we are looking for
all shortest paths (or our destination node is the last to be visited),
we will perform the body of the inner loop once for each edge in
the graph. This very closely approximates the runtime behavior of
the traversal algorithms earlier and results in a likely worst-case
runtime of O(N2). However, Dijkstra’s algorithm is well researched,
and known improvements can be made to this runtime by choosing
clever data structures to represent different components.

Minimum Spanning Trees (MSTs)

A Minimum Spanning Tree (MST) is a subgraph (subset of edges) that
satisfies the following conditions:

1. It must be a tree. In other words, there must be no cycles
within the subgraph.

2. It must be spanning, which means that all the nodes in the
original graph exist in the subgraph and are reachable using

Graphs | 311

only the edges in the subgraph.
3. It is possible to have more than one spanning tree for a given

graph. Of those possible spanning trees, the MST is the one
with the lowest cumulative edge weight.

As with other graph properties and algorithms, MSTs have
numerous applications in the natural world. The canonical example
is that of a network broadcast. Imagine computers as nodes and
the network connections between them as edges. In computer
networking, we often want to be able to broadcast a message to all
nodes on the network (or, put simply, ensure that all nodes receive a
particular message). The MST represents the lowest-cost means of
transmitting such a message. Note that this is not the fastest means
of transmission. That would indeed be a tree created by running a
single-source shortest-path algorithm like Dijkstra’s.

As with single-source shortest path, MSTs can be produced
via numerous algorithms. The only one we address here is Prim’s.
We do so due to its similarity with Dijkstra’s. Dijkstra’s produced
shortest paths by comparing a known distance against the sum
of the cumulative distance to the predecessor plus the newly
considered edge (see line 11 in the pseudocode). This comparison
can be made because the distance for a node denotes the shortest
path we have considered so far. Prim’s algorithm changes the
meaning of the distance value as well as the comparison on line
11. Rather than representing the cumulative distance as we did for
shortest path, distance now represents the cost to add that node
into the MST. The final change is simple: if we remove n.Dist from
both lines 11 and 12, then we now find the MST rather than a
shortest-path tree.

Exercises

312 | Graphs

1. Imagine you have a sparse graph with a large
number of nodes but a relatively small number of edges.
You are working in a system with strict constraints on
how much memory you can consume. How does this
impact your decision between an adjacency matrix and an
adjacency list?

2
. The breadth first example and pseudocode assume

an unweighted and undirected graph. Does this pseudo
code change if the graph is weighted? What if it is
directed?

3
. Consider an array of numbers. Devise a way of

sorting these numbers using the graph algorithms from
this chapter. The challenging part here is to determine
how to model the array as a graph. Hint: What if the
numbers are nodes, each node is connected to each other
node, and the weight is the difference between the two
nodes’ values?

References

Levin, Ocsar. “Graph Theory.” In Discrete Mathematics:
An Open Introduction, 3rd ed., chap. 4. 2019.

Graphs | 313

http://discrete.openmathbooks.org/dmoi3/
ch_graphtheory.html

314 | Graphs

12. Hard Problems

Learning Objectives

After reading this chapter you will…

• understand how computer scientists classify
problems.

• be able to define some of the most common classes
of problems in computer science.

• be able to explain the relationship between P and
NP problem classes.

• understand some key properties of NP-complete
and NP-hard problems.

• understand the role of approximate solutions and
heuristics in battling hard problems.

Introduction

Everyone in life faces hard problems. Figuring out what to do with
your life or career can be hard. You may find it hard to choose
between two delicious menu items. These problems, while “hard”
in their own way, are not the kinds of hard problems we will be
exploring in this chapter. In this chapter, we will introduce some
of the key ideas that support the theory of computation, the
theoretical foundation of computer science. The discovery of these

Hard Problems | 315

concepts is rather recent in the history of science and mathematics,
but these concepts provide some fascinating insight into how
humanity may attempt to solve the most difficult problems.

In the following sections, we will introduce the most
discussed complexity classes in theoretical computer science.
These are the complexity classes of P, NP, NP-complete, and NP-
hard. These classes highlight many interesting and important
results in computer science. We will explore what makes problems
“easy” or “hard” in a theoretical sense. We will then explore some
concepts for tackling these hard problems using approximations
and heuristics. Finally, we will end the chapter with a discussion of
an “impossible” problem, the halting problem, and what this means
for computability.

The goal of this chapter is to simply introduce some of the
important theoretical results in computer science and to highlight
some ways in which this knowledge can be practical to a student of
computer science. We will not introduce a lot of formal definitions
or attempt to prove any results. This chapter is to serve as a
jumping-off point for further study and, hopefully, an inspiring
introduction to some of science’s most profound discoveries about
computing and problem-solving.

Easy vs. Hard

In some ways, what computer scientists view as an easy or hard
problem is very simple to determine. Generally, if a problem can
be solved in polynomial time—that is, O(nk) for some constant k—it
is considered an easy problem. Another word that is used for this
type of problem is “tractable.” Problems that cannot be solved in
polynomial time are said to be “intractable” or hard. These include
problems whose algorithms scale exponentially by O(2n), factorially
by O(n!), or by any other function that grows faster than an O(nk)
polynomial function. Remember though, we are thinking in a

316 | Hard Problems

theoretical context. Supposing that k is the constant 273, then even
with the small n of 2, 2273 is a number larger than the estimated
number of atoms in the universe. In practice, though, few if any real
problems have algorithms with such large degree polynomial scaling
functions. By similar reasoning, some specific problem instances of
our theoretically intractable problems can be exactly solved in a
reasonable amount of time. In general, this is not the case though.
Interesting problems in the real world remain challenging to solve
exactly, but many of them can be approximated. These “pretty good”
solutions can still be very useful. In the discussions below, we will
mostly focus on time complexity, but a lot of theoretical study has
gone into space complexity as well. Let’s explore these ideas a bit
more formally.

The P Complexity Class

In our discussion of hard problems, we need to first define some
sets of problems and their properties. First, let’s think about a
problem that needs to be solved by a computer. A sorting problem,
for example, provides an ordered list of numbers and asks that they
be sorted. Solving this problem would provide the same numbers
reordered such that they are all in increasing order. We know that
there exist sorting algorithms that can solve this problem in O(n2)
and even O(n log n) time. Problems such as these belong to the P
complexity class. P represents the set of all problems for which
there exists a polynomial time algorithm to solve them. This means
that an algorithm exists for solving these problems with a time
scaling function bounded by O(nk) for some constant k.

Strictly speaking, P is reserved only for decision problems,
a problem with only a yes or no solution. This is not a serious
limitation from our perspective. Many of the problems we have seen
in this book can be easily reformulated as decision problems of
equal difficulty. Suppose there is an algorithm, let’s identify it as

Hard Problems | 317

A, that solves instances of a decision problem in P. If A can solve
any instance of the problem in polynomial time, then we say that
A decides that set of problem instances. For any input that is an
instance of our problem, A will report 1. In this case, we say A
accepts the input. If any input is not an instance of that decision
problem, A will report 0. In this case, we say A rejects that input.

By framing our algorithms as decision problems, we can
rely on some concepts from formal language theory. From this
framework, we think about encoding our inputs as strings of 0 and
1 symbols. We should know numbers can be encoded in binary,
but other types of data, such as images and symbol data, can also
be so encoded. At some level, all their data are stored in binary
on your phone or computer. We can use 0 and 1 as symbols to
construct the strings of our binary language. In the formal language
model, A acts as a language recognizer. If the input string is part
of our specific language of problem instances, A will accept it as
part of the language. If an input string is not part of the problem
set of instances, A will reject it as we discussed in the previous
paragraph. This is one of the formalizations that have been used
to reason about problems in theoretical computer science. We will
not explore formal languages any further here, but this model is
equivalent to the practical problem-solving we have explored in this
textbook. The language model also closely relates to the simplest
theoretical model of computing, the Turing Machine.

The concept of determinism is another important idea to
introduce in our discussion of the complexity class P. The P class is
described as the class of deterministic polynomial time problems.
This requires a bit of subtlety to describe accurately. For now, we
will just say that the algorithms for solving problems in P function
deterministically in a step-by-step fashion. This could be
interpreted as meaning that the algorithms can only take one step
at a time in their execution. This definition will make more sense
as we discuss the next complexity class, NP, or the class of
nondeterministic polynomial time problems.

318 | Hard Problems

The NP Complexity Class

We think of problems in P as being easy because “efficient”
algorithms exist to solve them. By efficient, we mean having
polynomial time complexity, O(nk). The NP complexity class
introduces some problems that can be considered fairly hard. NP
stands for nondeterministic polynomial time complexity. The NP
class of problems introduces the idea of solution verification. If you
were given the solution for an algorithm, could you verify that it was
correct? Think about how you might verify that a list of numbers is
sorted. How could you verify that 7! = 5040? I’m sure you can think
of several ways to easily check these answers in a short amount
of time. Again, we will focus on decision problems, but decision
versions of all problems can be constructed such that we do not
lose generality in this discussion. For a problem to be in NP, there
must exist an algorithm A that verifies instances of the problem by
checking a “proof” or “certificate.” You may think of the certificate
as a solution to the problem that must be verified in polynomial
time.

NP leaves the question of whether a problem can be solved
quickly and considers whether the solution could be verified
quickly. The nondeterministic part refers to the idea of ignoring
how quickly the problem could be solved. We mentioned that a
deterministic algorithm could take only one step at a time. We
could think of a nondeterministic algorithm as one that could take
many steps “at the same time.” One interpretation of this might be
considering all options simultaneously. The main takeaway is that
a correct solution must be verifiable in polynomial time for the
problem to be a member of NP.

Hard Problems | 319

An Example of an NP Problem:
Hamiltonian Cycle

At this point in our discussion, it may be helpful to examine a classic
example of a problem in NP. A Hamiltonian cycle is a path in a
graph that visits all nodes exactly once and returns to the path’s
start. Finding this kind of cycle can be useful. Consider a delivery
truck that needs to make many stops. A helpful path might be one
that leaves the warehouse, visits all the necessary stops (without
repeating any), and returns to the warehouse. For the example
graph below, we may wish to solve the decision problem of “Given
the graph G = {V, E}, does a Hamiltonian cycle exist?”

Figure 12.1

We will discuss the complexity of solving this problem
soon, but for now, we will consider how to verify a solution to the
problem. Suppose that we are given this problem and a potential
solution. How would we verify the correctness of the solution? The
“proof” or “certificate” of this problem could be the ordered list

320 | Hard Problems

of vertices in the cycle. We could easily verify this solution by
attempting to traverse the nodes (or vertices) in order along the
graph. If we visit all the vertices and return to the starting vertex,
the verification algorithm could report “yes.” This would only
require work proportional to the number of nodes, so verifying
a solution to the Hamiltonian cycle problem would have a time
complexity of O(n), where n is the number of nodes in the graph.
This means that this problem could be easily verified, and by “easily,”
we mean it could be verified in polynomial time. For the above
graph, a Hamiltonian cycle would be {E, A, C, B, D, G, F, H, E}. Note
that we must return to the original position for the path to be a
cycle. This is illustrated below:

Figure 12.2

The fact that the Hamiltonian cycle problem can be easily
verified may give the (false) impression that it is also easily solvable.
This does not appear to be the case. One approach to solve it
might be to enumerate all the possible cycles and verify each one.
Each cycle would be some permutation of all the vertices. With
n as the number of vertices in the graph, this means that there

Hard Problems | 321

would be O(n!) possible orderings to check! This naïve algorithm is
even slower than exponential time O(2n). In fact, one of the best
algorithms known to solve it has a runtime complexity of
O(2nn2)—better than O(n!) but still extremely slow for relatively
small n.

Before we move on to the next section, let’s consider the
P complexity class in the context of NP. It should be clear that
any problem in P must also be in NP. If a problem can be easily
solved, it should also be easily verified. Consider for a moment the
opposite situation where a problem is easy to solve but difficult to
verify. Struggling to verify a solution to a problem might call into
question how easily it was solved. The complexity class P represents
all problems solved in polynomial time, and it is a subset of the NP
class. Now whether it is a “proper subset” or not of NP is a classic
unsolved problem in computer science theory. A proper subset
means that it cannot be equivalent to the NP class itself. From this
discussion, it may seem as though P and NP are not the same set,
but many brilliant mathematicians and scientists have attempted
to prove or disprove this fact without any success for decades.
Whether P = NP or not remains unknown. In the next section, we
will discuss this further and highlight just why the P = NP or P ≠ NP
question is so interesting.

Polynomial Time Reductions

In this section, we will introduce the idea of a reduction. Informally,
the term “reduction” refers to a method of casting one problem
instance as an instance of another problem such that solving the
new “reduced” problem also solves the original. As we explore the
next two complexity classes of NP-hard and NP-complete, we use
this powerful idea of reductions. Using an efficient reduction to
transform one problem into another would serve as a key to solving
a lot of different problems.

322 | Hard Problems

We will briefly consider a classic problem known as the
Circuit-Satisfiability Problem. This is often abbreviated as
CIRCUIT-SAT, but this could also represent the set of all circuit
satisfiability problems (or, specifically, their instances). Suppose we
want to determine if a circuit composed of logic gates has some
assignment to its inputs that makes the overall circuit output 1. The
circuits are composed of logic gates that take inputs that are either
0 or 1, standing for either low or high voltage. The typical diagram
for these gates is given below:

Figure 12.3

These gates correspond to their interpretation in
mathematical logic. This means that the AND gate will output a 1
when both of its inputs are 1. We can compose these gates into
larger circuits. The image below presents an example of a circuit
that uses several of these gates and takes three inputs, marked X, Y,
and Z:

Hard Problems | 323

Figure 12.4

The decision problem for CIRCUIT-SAT would decide the
question of “Given a representation of a circuit composed of logic
gates, does an assignment of zeros and ones to the inputs exist that
makes the overall circuit output 1?” Such an assignment of inputs
is said to satisfy the circuit. One method of solving this problem
would be to try all possible combinations of 0 and 1 assignments.
Given n inputs, this would be attempting to try O(2n) possibilities.
Given a potential solution, we could verify the assignment satisfies
the circuit by simply simulating the propagation of input values
through the sequence of logic gates. An algorithm for solving
CIRCUIT-SAT problems would be very useful. Let’s look at why.

Suppose we have another problem we wish to solve: Given
a logical formula, can we provide an assignment to the logical
Boolean variables that satisfies the formula? To satisfy the formula
means to find an assignment of true or false values to the variables
that makes the overall formula true. This is known as the Boolean
satisfiability problem, and these problem instances are usually
referred to as the set SAT. A logical formula can be composed
of variables and Boolean functions on those variables. These are
the functions AND, OR, and NOT. These are usually written as the
symbols ˄ (AND), ˅ (OR), and ¬ (NOT). Additionally, the formulas use

324 | Hard Problems

parentheses to make sure there are no ambiguous connections. An
example of a Boolean formula is given below:

(x ˄ y) ˅ (¬x ˄ z).

Formulas such as this can be used to model many problems
in computer science. If we had an algorithm that could solve
CIRCUIT-SAT problems, Boolean formula problems could be solved
by first constructing a circuit that matched the formula and then
passing that circuit representation to the algorithm that decides
CIRCUIT-SAT. The figure below gives a circuit that corresponds to
the Boolean formula given above:

Figure 12.5

An assignment of 0 or 1 to the inputs of this circuit would
correspond to an assignment of true or false to the Boolean
variables of the formula. While not a formal proof, hopefully this
illustration demonstrates how one instance of a problem can be
cast into another and a solution to one can be used to solve the

Hard Problems | 325

other. A key point is that this conversion must also be efficient.
For this strategy to be effective, the reduction from one problem
(SAT) to another problem (CIRCUIT-SAT) must also be efficient. If just
doing the reduction was intractable and difficult, then we would
not make any progress. We will only be interested in reductions
that can be done in polynomial time. For this problem, we could
create a procedure that would parse a string representation of the
formula and generate a parse tree. From this tree, we could use each
branching node to represent a logic gate, and from this, we could
construct a representation of the circuit. Generating the parse tree
might require O(n3) operations (this is an upper bound on some
parsing algorithms), and converting the tree could be done using a
tree traversal costing O(n). This means that for this case, we could
efficiently “reduce” the SAT problem into an instance of CIRCUIT-
SAT.

We will introduce the notation for reducibility here, as it
will be helpful in the following discussions. Remember that we can
also talk about the representations of problems as being strings
in a language. We might say that SAT, or all the problems in SAT,
represents a language L1. The problems in CIRCUIT-SAT represent
the language L2. Now to capture the above discussion in this
notation, we would write L1 ≤P L2, using a less than or equal to
symbol with a P subscript. The meaning of L1 ≤P L2 is that L1 is
polynomial-time reducible into an instance of L2. The less than or
equal to symbol is used to mean that problems in L2 are at least as
hard as problems in L1. The P subscript is there to remind us that the
reduction must be doable in polynomial time for this to be a useful
reduction.

Let’s provide one more example of a reduction. Another
interesting and well-studied problem in computer science is the
Traveling Salesman Problem or TSP. This problem tries to solve
the practical task of minimizing the amount of travel between the
different cities for a salesperson before they return home. Another
way to cast the problem might be to ask, “What is the route that
minimizes energy usage for a delivery truck such that it makes

326 | Hard Problems

all its stops and returns to the warehouse?” You may already be
thinking back to our discussion of Hamiltonian cycles. The TSP is
looking for a minimum-cost tour, which is precisely a Hamiltonian
cycle. To consider the decision version of the TSP, we would take
a graph with edge weights representing the costs of traveling from
one destination to another and a cost threshold k. The decision
problem then asks, “Given the weighted graph G and the threshold
k, does there exist a minimum cost tour with a cost at most k?” So
an instance of the Hamiltonian cycle problem could be reduced to
an instance of the TSP. Taking an instance of the Hamiltonian cycle
problem, we could construct a new graph with all edge weights set
to 0. This could be done easily in polynomial time by modifying the
representation of the graphic. This new weighted graph could be
passed to an algorithm from solving TSP with k set to 0. Let’s let the
set of all instances of Hamiltonian cycle problems be HAM-CYCLE.
This means that we have HAM-CYCLE ≤P TSP, and any algorithm
that solves instances of TSP can solve instances of HAM-CYCLE.

The NP-Hard and NP-Complete
Complexity Classes

Reductions serve as a key to solving problems by taking them from
one type of problem and transforming them into another. We
explored two examples of reductions in the previous section. The
SAT problems are reducible to the CIRCUIT-SAT problems. The
HAM-CYCLE problems are reducible to the TSP problems. Other
clever results have demonstrated that three-coloring a graph is
reducible to the SAT problems. Interestingly, there are algorithms
that can solve any problem in NP by reducing them from other
problem types into an instance of a specific NP problem. These
problems represent the NP-hard complexity class. More formally,
an NP-hard problem is a problem (language) L, such that for any

Hard Problems | 327

problem L′ in NP, L′ ≤P L. In other words, any algorithm for solving
an NP-hard problem could solve any problem in NP. All four of our
problems—CIRCUIT-SAT, SAT, HAM-CYCLE, and TSP—are NP-hard.
The Cook–Levin theorem proved an interesting result showing that
SAT is both in NP-hard (can be used to solve any NP problem)
and in NP (easily verifiable). The class of problems with these
characteristics is known as the NP-complete problems.

Now we revisit the P = NP or P ≠ NP question. Why is
this a big deal? Suppose a problem set (and algorithm) could be
found that was in NP-complete and in P. This would mean we have
an NP-hard problem that can be easily solved. This result would
mean that any NP problem could be easily solved in O(nk) time.
We would simply reduce any NP problem into an instance of our
special problem and solve it in polynomial time. This scenario would
be the incredible result of a P = NP reality. The question is still
up for debate, and no one has been able to prove this fact or,
more importantly, find the algorithm. A world in which all difficult
problems could be easily solved would certainly be interesting. For
now, it is unknown whether P = NP or P ≠ NP. Many believe that P ≠
NP is the more likely scenario, but it has never been proven.

Approximation Algorithms and Heuristics

We should discuss the practical matter of how to solve difficult
problems. We have given a somewhat formal description of NP-
Hard and NP-Complete complexity classes, but let’s reconsider
these problems in practical terms. Suppose we need to solve a SAT
problem with 60 variables, and we brute-force search by trying
every combination of Boolean assignments and evaluating them.
The brute-force search requires O(2n) operations. So with 60
variables, the number of combinations is on the order of 260. We
call the set of all possible solutions the search space. If we assume
a computer could check 2 billion of these possible assignment

328 | Hard Problems

solutions per second (which is reasonable), we could expect the
calculation to be completed in about 18 years. The worst-case
exponential time complexity for exploring the search space means
that solving these problems quickly is impossible even for relatively
small n (< 100).

We want solutions very quickly and cannot wait 18 years
to figure out our best delivery route for this morning’s deliveries.
Delivery companies want to be efficient to conserve energy.
Factories want to maximize output and keep their machines
running. Sometimes a great approximate solution to an NP-
complete problem can be found quickly. An approximate solution
is not totally correct, but it may satisfy many of the problem’s
requirements. Suppose that we found a SAT assignment that could
satisfy most of our Boolean formula’s expressions in the previous
example; then this might still be very useful. Many real-world
problems can be modeled by NP-complete problems, so finding
good approximations for them is important work.

Many strategies exist for finding good approximations. The
search for a good approximation can be framed as an optimization
problem. We want to optimize a current solution’s value toward the
optimal value of a fully correct solution. One approach might be
to randomly try many different solutions and calculate the value.
Each time you find a solution with a better value, you save it as
the current best. You let the algorithm run for a fixed amount
of time. When the time is up, return the best solution that was
found. In general, the search for a good approximation makes use
of heuristics. Heuristics are strategies or policies that help direct
a search algorithm toward better approximations. The hope is that
the heuristic will help guide the search toward an optimal solution.
Unfortunately, this is not a guarantee. Algorithms usually act on
local information, so any heuristic might be guiding the search
toward a local optimum while the global optimum is in the other
direction. Developing heuristics for NP-complete problems is an
active field of research. We will look at one heuristic, the greedy
algorithm, and see how it might be applied to an NP-Hard problem.

Hard Problems | 329

The greedy algorithm uses the heuristic to always make the
choice that maximizes the current value. To explore this heuristic,
we will introduce another NP-hard problem. The bin packing
problem seeks to optimally pack objects of different sizes into a
fixed-size bin. Each item has a cost associated with it, and the bin
has a capacity threshold where no items may be added that would
push the total cost over the threshold. You can think of this as
the bin getting full of stuff, and nothing else can be put in it. The
example below gives an illustration of the bin packing problem:

Figure 12.6

Given the boxes and their sizes, is there a way to pack all
the boxes in the minimum number of bins? It might seem simple,
but to solve this problem optimally, in general, might require a lot of
time. One approach to finding the optimal number of bins would be
to try all orderings of the items. Attempt to create bins by taking the
items in the ordering and opening a new bin when the first is full.
By trying all possible orderings of the items, the optimal bin number
would be found, but this would take O(n!) time.

330 | Hard Problems

Using the greedy heuristic may help speed up our search
even if the result may be suboptimal. A greedy algorithm tries to
maximize or minimize the current value associated with a solution.
For bin packing, a greedy strategy would be to always put the
current item in the bin that minimizes the bin’s extra capacity. In
other words, put the item in the bin where it fits the tightest. This
is known as the Best Fit algorithm. An example of a Best Fit solution
is presented below for the ordering {3, 3, 2, 3, 1, 2, 2, 5, 7, 2}. This
assumes that the items arrive in a fixed order, and they cannot be
reordered. We do get to choose which bin to place them in though.
This is sometimes known as the “online” version of the bin packing
problem.

Figure 12.7

At each step, the algorithm tries to create the most tightly
packed bin possible. A clever algorithm for Best Fit achieves an O(n
log n) time complexity by querying bins by their remaining capacity
in a balanced binary search tree. This algorithm is extremely fast
compared to the brute-force method, but it is not optimal. Below is
an optimal solution:

Hard Problems | 331

Figure 12.8

Depending on whether the items can be reordered or not,
we may have the opportunity to first sort the items before applying
Best Fit. Another good greedy algorithm for bin packing first sorts
the items into descending order and then applies the Best Fit
algorithm. This is known as Best Fit Decreasing. The figure below
shows the result of applying Best Fit Decreasing to our block
problem. This strategy does yield an optimal solution in this case.
This algorithm would also have an O(n log n) time complexity. These
algorithms show the value of using a heuristic to discover a good
approximate solution to a very difficult problem in a reasonable
amount of time.

332 | Hard Problems

Figure 12.9

Bin packing provides insight into another feature of NP-
complete and NP-hard problems. The decision version of the bin
packing problem asks, “Given the n items and their sizes, can all
items be packed into k or fewer bins?” This decision problem turns
out to be NP-Complete. Given a potential solution and the number
of bins, we can easily verify the number of bins used and the excess
capacity in O(n) time. This fact confirms that the problem is in NP.
Even with a target number of bins given, we would have to try
overwhelmingly many configurations to ultimately determine if all
the items would fit into the k bins. Now we may also be interested
in determining the optimal number of bins. This decision problem
might be asked as “Given the n items and their sizes, does the
minimum packing require at most k bins?” Consider how we might
verify that the optimal configuration was found. This means that we
were given a solution and told it is optimal. We would now need
to verify it. We could easily verify if the solution fits into the given
number of bins. On the other hand, verifying that the number of
bins for this solution is optimal would require considering all the
possible solutions and checking that no other solution exists with
a smaller number of bins. This means that the optimization version

Hard Problems | 333

of this problem is not in NP. Therefore, the optimization problem is
only NP-hard and not NP-complete. This pattern is common with
NP-complete problems. If the decision version of a problem is NP-
complete, its optimization version is usually only in NP-hard.

The Halting Problem

Before we end the chapter, we should discuss one of the classic
problems in computer science, the halting problem. The halting
problem illustrates the existence of “unsolvable” problems. Alan
Turing proved the existence of a particular undecidable problem.
The halting problem can be defined as asking the question “Given
a representation of a computer program and the program input,
will the program halt for that given input or run forever?” Turing’s
argument proposed the existence of a program (an algorithm
running on a machine) that could detect if another program would
halt given a specific input. Let’s just informally say we have a
function like checkIfHalts(program, input). If the input program
would halt, meaning complete successfully, on the given input, then
checkIfHalts would report yes. If the program would run forever
given the input, checkIfHalts would report no. This would be an
algorithm that decides the halting problem. Running this
hypothetical algorithm on a machine would allow a scheme for
deciding if a program would halt. The program checkIfHalts would
simulate the program P with the given input and decide if P halts on
the input. This machine is presented in a diagram below:

334 | Hard Problems

Figure 12.10

The interesting part of the argument suggests that our
program runs with its own representation presented as the input.
Let’s construct another machine using checkIfHalts that will run
forever if the program halts given an input but will halt if the
program runs forever (as verified by checkIfHalts). Below is a
diagram of this machine. We will call it loopIfHalts.

Figure 12.11

Now we construct one final machine as follows. This
machine will take as input the representation of a program and

Hard Problems | 335

try to determine if that program would halt when given a
representation of itself as input. This is done by copying the
program and using the copy as input. This machine is presented
below. We will just call this M(program).

Figure 12.12

Now suppose that we run M with a representation of M
as the input. We can think of this as calling M(M). If the program
M should halt given M as the input, then M(M) should run forever.
However, this is exactly what we did. We passed M into M, and if it
runs forever, then M(M) should halt. This leads to a contradiction.
We have a paradox where M should both run forever and halt. Since
we arrived at a contradiction and all these algorithms (loopIfHalts
and M) are derived from our hypothetical checkIfHalts program,
these facts indicate that such a program cannot exist. This means
that the halting problem is undecidable. This proof was discovered
by Alan Turing and published in 1936. It provided some of the first
evidence of problems that were literally unsolvable. Now that’s a
hard problem!

336 | Hard Problems

Summary

In this chapter we have explored many incredible results in
computer science theory. We have explored what it means for a
problem to be hard in a practical sense and in a theoretical sense.
We also discussed the existence of impossible problems. These
problems cannot be solved by any computer no matter how
powerful or how much time they are given. Scientists are still
working to understand whether P = NP or not. If this result turns out
to be true, there may exist an efficient algorithm for solving many
of our most difficult problems exactly. For now, though, no such
algorithm is known. Computer scientists and humans in general
never give up in the face of hard problems. We also explored the use
of heuristics to help find suitable solutions when an exact solution
might not be practical to find. These results in computer science
theory will help you understand what makes problems hard and
what to do about them.

Exercises

1. Do some research on NP-complete problems. Find
an NP-complete problem that was not discussed in this
chapter. What is the current best time complexity for the
problem?

2
. For your problem in exercise 1, how efficient in

terms of runtime complexity are the current best
approximation algorithms for the problem? What

Hard Problems | 337

heuristics are used in the approximate solution?
3
. In your language of choice, implement the Best Fit

algorithm for bin packing. Feel free to use a Linear Search
rather than a balanced search tree. Use an interactive
loop to allow the user to enter different sizes for each of
the items and apply the greedy algorithm. Compare your
implementation results to examples from this chapter.

4
. Try the following thought exercise. Consider the

possibility that an algorithm is discovered that solves NP-
complete problems in polynomial time. Write a paragraph
describing how our society might change with the advent
of this algorithm. Be sure to address some specific
algorithms that could be made efficient and how solving
them quickly might impact society.

References

Bellman, Richard. “Dynamic Programming Treatment of
the Travelling Salesman Problem.” Journal of the ACM
(JACM) 9, no. 1 (1962): 61–63.

Cormen, Thomas H., Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms, 2nd
ed. Cambridge, MA: The MIT Press, 2001.

338 | Hard Problems

Held, Michael, and Richard M. Karp. “A Dynamic
Programming Approach to Sequencing Problems.” Journal
of the Society for Industrial and Applied Mathematics 10,
no. 1 (1962): 196–210.

Tovey, Craig A. “Tutorial on Computational
Complexity.” Interfaces 32, no. 3 (2002): 30–61.

Turing, Alan Mathison. “On Computable Numbers, with
an Application to the Entscheidungsproblem.” J. of Math.
58, no. 5(1936): 345–363.

Hard Problems | 339

340 | Hard Problems

Paul W. Bible
DEPAUW UNIVERSITY

Lucas Moser
MARIAN UNIVERSITY

Contributors

Authors

Paul W. Bible is currently a faculty member in the Department of
Computer Science at DePauw University in Greencastle Indiana. He
holds a Ph.D. in Computer Science and has conducted research in
bioinformatics and computational biology both internationally and
at the National Institutes of Health. Dr. Bible believes in the power
of equity in education to drive social change. He hopes that this
book will help more students succeed on their path to becoming
computing professionals.

 https://orcid.org/0000-0001-9969-4492

Lucas Moser is an independent consultant and faculty member at
Marian University’s Department of Mathematical and
Computational Science. There he passionately shares his assertion

Contributors | 341

https://orcid.org/0000-0001-9969-4492

Aaron Boudreaux
UNIVERSITY OF LOUISIANA AT LAFAYETTE

Joshua Kiers
MARIAN UNIVERSITY

Mia M. Scarlato

that a rich education plays a major role in the development of
problem-solving skills. His experiences in software engineering,
management, and teaching bring a unique perspective to both
project teams and students.

 https://orcid.org/0009-0006-9452-1246

Reviewers

Illustrator

342 | Contributors

https://orcid.org/0009-0006-9452-1246

	Contents
	Publisher's Note
	Acknowledgements
	Algorithms, Big-O, and Complexity
	Recursion
	Sorting
	Search
	Linked Lists
	Stacks and Queues
	Hashing and Hash Tables
	Search Trees
	Priority Queues
	Dynamic Programming
	Graphs
	Hard Problems
	Contributors

