
REVIEW

The Journal of the American Osteopathic Association   July 2016  |  Vol 116  |  No. 7452

From the Division of 

Biomedical Science at 

Marian University College  

of Osteopathic Medicine  

in Indianapolis, Indiana.

Financial Disclosures:  

None reported.

Support: None reported.

Address correspondence to 

Jonathan W. Lowery, PhD, 

 3200 Cold Spring Rd, 

EC317E,  

Indianapolis, IN  

46222-1960.

E-mail:  

jlowery@marian.edu

Submitted  

August 31, 2015;  

revision received  

December 15, 2015; 

accepted  

January 21, 2016.

The transforming growth factor β (TGF-β) superfamily is a large group of 
signaling molecules that includes TGF-βs, activins, growth differentiation 
factors (GDFs), and bone morphogenetic proteins (BMPs).1 Components of 

the TGF-β superfamily are present in all animal genomes studied to date, but they are 
not found outside this kingdom, indicating that it is an ancient intercellular commu-
nication pathway in animals. As such, studies in humans and animal models such as 
nematodes, flies, fish, and rodents, have unequivocally demonstrated that members 
of this superfamily play conserved roles in embryo specification, organogenesis, 
and tissue homeostasis. Moreover, dysfunction in the regulation or activity of this 
superfamily’s components underlies numerous human diseases and developmental 
defects.2 Cardiovascular, connective tissue, and musculoskeletal diseases seem to 
be the most common outcomes of altered TGF-β superfamily signaling and include 
entities such as Marfan syndrome, Camurati-Engleman disease, and fibrodysplasia 
ossificans progressiva.2 Vascular diseases, such as hereditary hemorrhagic telangi-
ectasia and pulmonary arterial hypertension, and some hereditary cancers are also 
related to defects in TGF-β superfamily signaling.2 
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The transforming growth factor β (TGF-β) superfamily is a large group 

of signaling molecules that participate in embryogenesis, organogen-

esis, and tissue homeostasis. These molecules are present in all animal 

genomes. Dysfunction in the regulation or activity of this superfamily’s 

components underlies numerous human diseases and developmental 

defects. There are 2 distinct arms downstream of the TGF-β superfamily 

ligands—the bone morphogenetic protein (BMP) and activin/TGF-β signal-

ing pathways—and these 2 responses can oppose one another’s effects, 

most notably in disease states. However, studies have commonly focused 

on a single arm of the TGF-β superfamily, and the antagonism between 

these pathways is unknown in most physiologic and pathologic contexts. 

In this review, the authors summarize the clinically relevant scenarios 

in which the BMP and activin/TGF-β pathways reportedly oppose one 

another and identify several molecular mechanisms proposed to mediate 

this interaction. Particular attention is paid to experimental findings that 

may be informative to human pathology to highlight potential therapeutic 

approaches for future investigation.
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ligands upstream of receptor binding and prevent 
pathway activation. Receptor use by TGF-β superfamily 
ligands can be modulated by co-receptors such as endo-
glin. The inhibitory SMADs—SMAD6 and SMAD7—
prevent RA-SMAD interaction with SMAD4 or block 
their activation at the type 1 receptor level, respectively.  
Receptor-activated SMAD and receptor degradation  
is promoted by E3 ubiquitin ligases such as SMAD  
ubiquitination regulatory factor 1 (SMURF1).1 The 
transcriptional regulation ability of SMADs can be 
blocked by interaction with inhibitory proteins such as 
ski-related novel protein N (SnoN).

Antagonism Between BMP  
and Activin/TGF-β Signaling
Genomic and genetic studies have revealed that the 
same basic pathway architecture found in humans is 
conserved among all other animals. Two distinct sig-
naling pathways are located downstream of the TGF-β 
superfamily ligands (Table). In general, structural con-
siderations delineate the TGF-β superfamily into li-
gands that interact with ALK1/2/3/6 or ALK4/5/7, the 
former being mostly BMPs (some of which are also 
called GDFs) and the latter being mostly activins and 
TGF-βs. Evolutionarily, it is likely that the BMP re-
sponse (activation of RA-SMADs 1, 5, and 8) is ances-
tral, whereas the activin/TGF-β response (activation of 
RA-SMADs 2 and 3) arose later.1 However, both path-
ways converge at the common transcription factor 
SMAD4, which helps explain the synergistic effects 
that are often observed upon combined activation.  
On the other hand, reports of markedly opposing effects 
between the BMP and activin/TGF-β pathways are  
becoming increasingly common, especially in disease 
states, with more than 50 articles published in the  
past 5 years alone. Most of the studies, though, focus on 
a single arm of the TGF-β superfamily, leaving the  
contribution of antagonism unknown in most develop-
mental and physiologic contexts. 

	 In this review, we identified studies with potential 
relevance to this topic in PubMed using combinations 
of the following search terms: activin, BMP, bone mor-
phogenetic protein, GDF, growth differentiation factor, 
TGF, and transforming growth factor. We then selected 
studies for further examination on the basis of their 
clinical relevance and experimental demonstration of 
antagonism between the BMP and activin/TGF-β sig-
naling pathways. 

TGF-β Superfamily  
Signaling Pathway
In humans, the TGF-β superfamily consists of more 
than 30 secreted ligands that signal through heteromeric 
combinations of receptor serine/threonine kinases  
embedded in the cell membrane.1 A generalized sche-
matic of the TGF-β superfamily signaling is shown in 
the Figure. These receptors are classified into types 1 
and 2, of which there are 7 and 5 isoforms, respectively. 
In the classic pathway, ligand binding brings the consti-
tutively active type 2 receptor near the type 1 receptor, 
allowing transphosphorylation to occur. The activated 
type 1 receptor then phosphorylates the C-terminus  
of a set of effector proteins called receptor-activated 
SMADs (RA-SMADs), of which there are 5 isoforms, 
and renders them active. The RA-SMAD then  
complexes with the transcription factor SMAD4 and 
translocates to the nucleus to accomplish gene regula-
tion. In addition, several clinically relevant signaling 
pathways are also activated by TGF-β superfamily  
ligands, including p38, extracellular signal-regulated 
kinase, and protein kinase B. SMAD4-independent 
abilities have also been reported, such as the regulation 
of microRNA processing.3

	 Given the widespread utility of TGF-β superfamily 
signaling in humans and other animals, it is not sur-
prising that the activity of this pathway is regulated at 
many levels.4 For instance, extracellular antagonists, 
such as follistatin and noggin, function to sequester  
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Clinical and Physiologic  
Contexts of Antagonism
Musculoskeletal System

Osteoporosis affects 10 million people in the United 
States and accounts for 1.5 million fractures annually.5,6 
With an additional 34 million people in the United States 
at risk for the disease, osteoporosis is both a major health 
problem and a considerable socioeconomic burden.5 
Osteoporosis-related bone loss occurs when bone resorp-
tion exceeds bone formation during remodeling, and a 
growing body of evidence indicates that activin/TGF-β 
signaling negatively influences postnatal bone mass. For 
instance, in vivo studies have shown that when activin/
TGF-β signaling is reduced through genetic or pharma-
cologic approaches, such as neutralizing antibody or re-
ceptor decoy strategies, bone formation rate and bone 
mass increase.7-13 In contrast, other in vivo studies have 
demonstrated that BMP signaling in osteoblasts regu-
lates bone formation and that an adequate level of BMP 
signaling is part of the mechanism for maintaining adult 
bone mineral density.14-16 These findings are congruent 
with the first function attributed to BMP signaling, which 
is the ability to promote endochondral ossification by 
inducing chondrocyte and osteoblast differentiation.17 
Conversely, activin/TGF-β signaling can inhibit mineral-
ization of the extracellular matrix, alkaline phosphatase 
activity, and proteoglycan synthesis, especially at later 
stages of chondrocyte and osteoblast differentiation.18-31 
	 Reciprocal effects of the BMP and activin/TGF-β 
pathways have also been demonstrated to play a role in 
regulating skeletal muscle mass and function, which is 
clinically relevant for patients with sarcopenia.32 As 
many as 13% of men and women older than 60 years 
have this condition, characterized by low skeletal muscle 
mass and strength.32 For many years, it has been known 
that activin and activinlike ligands such as myostatin 
negatively regulate skeletal muscle mass33,34; however, 
studies published in 2013 demonstrated that BMP sig-
naling positively regulates skeletal muscle mass and is 
essential to maintain muscle mass after disruption of the 

Figure. 
Generalized schematic of transforming growth 
factor β (TGF-β) superfamily signal transduction. 
Ligands interact with combinations of type 1  
and type 2 receptors, which in turn activate a  
set of effectors called receptor-activated SMADs 
(RA-SMADs). Receptor-activated SMADs recruit 
the transcriptional co-factor SMAD4 and translocate 
to the nucleus to accomplish gene regulation. 
Receptor-activated SMAD activation is  
regulated by SMAD7. Recruitment of SMAD4  
is regulated by SMAD6. Gene regulation events 
can be inhibited by ski-related novel protein N 
(SnoN). Degradation of receptors and RA-SMADs 
is promoted by SMAD ubiquitination regulatory 
factor 1 (SMURF1).

Ligand

Cell surface

Nucleus

Target gene

Type 1 
receptor

Type 2 
receptor

SMURF1

RA-SMAD

SMAD6

SMAD4

SnoN

SMAD7

Downloaded From: http://jaoa.org/ by a Marian University College of Osteopathic Medicine (MU-COM) User  on 05/03/2017



REVIEW

The Journal of the American Osteopathic Association   July 2016  |  Vol 116  |  No. 7 455

neuromuscular junction.35,36 These findings are particu-
larly intriguing given that some patients present with 
osteosarcopenia, in which decreases are seen in both the 
bone and skeletal muscle mass, and therapeutic strate-
gies targeting the ratio of BMP to activin/TGF-β sig-
naling, such as the receptor decoys or neutralizing 
antibodies mentioned above, may be beneficial for the 
simultaneous management of both conditions.

Pulmonary Vasculature

Activin/TGF-β signaling is reportedly elevated in the 
lungs of patients with pulmonary hypertension.37  
Pulmonary hypertension is a group of diseases character-
ized by remodeling of the small pulmonary arteries, 
which leads to increased pulmonary vascular resistance 
and eventual right ventricular hypertrophy and heart 
failure. Effective strategies for treating the vascular  
remodeling in pulmonary hypertension are lacking, in 
part due to an incomplete understanding of the under-
lying mechanisms mediating this process.38

	 Numerous lines of evidence from animal studies im-
plicate activin/TGF-β signaling in promoting pulmonary 
hypertension development.39-41 Conversely, genetic 
studies from humans and animals demonstrate that BMP 
signaling plays an endogenous protective role in main-
taining proper pulmonary vascular integrity and endothe-
lial function, and loss-of-function mutations in BMP 
components have been shown to increase the symptoms 
and physiologic changes associated with pulmonary hy-
pertension.4 The reasons for this reciprocal relationship 
are not clear at present, but detailed studies using geneti-
cally modified pulmonary artery vascular smooth muscle 
cells indicate that BMP signaling opposes the activin/
TGF-β pathway–induced effects on proliferation and ex-
pression of proinflammatory cytokines such as IL-1 and 
IL-6.42 These findings raise the possibility that strategies 
to activate BMP signaling may be beneficial in amelio-
rating the activin/TGF-β pathway–induced vascular re-
modeling in pulmonary hypertension; proof-of-concept 
for this idea has been provided in a 2015 study in mice.43 

Tissue Fibrosis

Transforming growth factor β is well recognized to 
promote fibrosis via epithelial-to-mesenchymal transi-
tion in numerous disorders. These disorders include 
cardiac fibrosis, renal fibrosis, pancreatic fibrosis after 
repeated episodes of acute pancreatitis, keloid forma-
tion, persistent skin fibrosis, chronic liver fibrosis, and 
pulmonary fibrosis.44,45 A provocative set of studies 
has highlighted that the BMP pathway opposes 
TGF-β–induced fibrosis and promotes tissue recovery 
in several of these clinically relevant contexts. For 
example, head-to-head competition between BMP and 
TGF-β signaling in fibrosis has been reported in car-
diomyocytes,46 ocular burn injuries,47 silica-induced 
or allergen-induced pulmonary fibrosis,48,49 and in a 
unilateral ureteral obstruction model in which TGF-β 
promoted glomerular fibrosis.50 Of note, Manson et 
al50 demonstrated that the endogenous BMP pathway 
plays a critical role in recovery after obstructive 
uropathies and that the treatment of mice with exoge-
nous BMP7 enhances renal recovery after unilateral 
ureteral obstruction. These studies serve as substantial 
proof-of-concept that activation of BMP signaling 
may be therapeutically advantageous in other contexts 
of TGF-β–induced fibrosis.

Cellular Differentiation

Antagonism between these pathways also appears to 
play a role in animal development, with activated 
SMAD1 (BMP signaling) vs SMAD2 (activin/TGF-β 
signaling) defining particular zones of endodermal dif-
ferentiation during anteroposterior patterning in the em-
bryo.51 Antagonism between BMP and activin/TGF-β 
signaling has also been reported in fetal trophoblastic 
and pancreatic epithelial cell differentiation,52,53 hair fol-
licle stem cell quiescence,54 fetal pancreatic colony for-
mation,52 activation of natural killer cells in cancer,55 and 
myogenic differentiation of myoblasts.56

	 The ability of antagonism between BMP and activin/
TGF-β to affect cellular differentiation may also have 
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This switchlike activity has been demonstrated in several 
cellular contexts for certain target genes. For instance, 
TGF-β signaling upregulates the expression of endo-
thelin-1 (ET-1), connective tissue growth factor (CTGF), 
plasminogen activator inhibitor-1 (PAI-1), e-cadherin, 
and S100 calcium-binding protein a4 (S100A4), but 
BMP7 downregulates these same targets.56,60-62 Similar 
data exist demonstrating the ability of BMP2 to down-
regulate activin/TGF-β target genes,23,63 likely indicating 
a general effect of the BMP pathway rather than BMP 
ligand specific. The reciprocal relationship has also been 
demonstrated wherein BMP2-induced genes are down-
regulated by TGF-β or activin.23,64 Differential gene regu-
lation likely explains the antagonism between these 
pathways in certain scenarios; however, we believe it has 
important limitations. The target genes of the BMP and 
activin/TGF-β pathways vary widely by physiologic 
context for reasons that are poorly understood,65 thus 
making it difficult to conceive that the reciprocal rela-
tionship is consistently maintained. For instance, al-
though BMP and TGF-β oppositely regulate the 
expression of the inhibitor of differentiation-1 gene 
(ID1), both pathways can also upregulate ID1 expres-
sion66,67; said differently, ID1 expression may be con-
trolled by an “on/on” switch in certain scenarios. 
Numerous additional examples exist of gene targets that 
are shared by both pathways while, simultaneously, 
others are inversely regulated.23

significant implications for therapeutic strategies in-
volving cellular reprogramming or tissue engineering. 
For instance, differentiation states of human and mouse 
embryonic stem cells and human-induced pluripotent 
stem cells are affected by antagonism between BMP and 
activin/TGF-β signaling.57-59

Antagonistic Mechanisms
Collectively, the studies cited above indicate that an-
tagonism between these pathways occurs in varied cel-
lular and physiologic contexts, many of which are 
clinically relevant. It should also be noted that the an-
tagonistic relationship operates bidirectionally and in 
response to numerous ligands. We contend that a better 
understanding of the molecular mechanisms mediating 
the interaction between these signaling pathways may 
identify novel strategies for therapeutic intervention. 
However, our review reveals that several major gaps 
exist in the scientific literature and, at present, it is un-
clear how this widespread antagonism is accomplished 
at a molecular level. 
	 Perhaps the most straight-forward explanation for 
how the BMP and activin/TGF-β signaling pathways 
lead to opposite cellular outcomes would be inversely 
controlling target gene expression. This mechanism can 
be thought of like a light switch—with one pathway 
turning the gene on while the other turns the gene off. 

Table 1. 
Signal Transduction Components Listed by Predominant Association  
With BMP or Activin/TGF-β Signaling Pathways

Component	 BMP Pathway	 Activin/TGF-β Pathway

Representative ligands	 BMP2, BMP7	 Activin, Myostatin, TGF-β1

Type 1 receptors	 ALK1, ALK2, ALK3, ALK6	 ALK4, ALK5, ALK7

Type 2 receptors	 BMPR2, ACVR2A, ACVR2B	 ACVR2A, ACVR2B, TGF-βR2

RA-SMAD	 SMAD1, SMAD5, SMAD8	 SMAD2, SMAD3

Co-SMAD	 SMAD4	 SMAD4

Abbreviations: BMP, bone morphogenic protein; RA-SMAD, receptor-activated SMAD; TGF-β, transforming growth factor β. 
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	 This, then, begs the question of how the seesaw is 
tilted—how is signal transduction in the BMP pathway 
dampened by activation of the activin/TGF-β pathway 
and vice versa? One possibility is that one pathway may 
reduce the expression of components of the other 
pathway, thereby limiting the amount of signal that is 
transduced. Several reports found that activin and TGF-β 
reduce the levels of BMP ligands, receptors, and effec-
tors.46,70,72,73 This action might be in response to the ac-
tivity of epigenetic mechanisms such as histone 
deacetylase activity in conjunction with SnoN or in-
creased protein turnover via SMAD7 function.24,70,74 The 
overexpression of SnoN or SMAD7 also impairs the ac-
tivin/TGF-β pathway, and BMP signaling causes degra-
dation of the TGF-β receptor ALK5 via SMAD7, which 
raises questions about the specificity of these factors in 
mediating antagonism between these pathways.61,62,75,76

	 Another possible mechanism is reducing the ability 
of ligands to engage receptors, which would presum-
ably lead to less signal initiation. For instance, TGF-β 
and activin each increase the expression of the BMP 
antagonists gremlin, MGP, and connective tissue 
growth factor,72,77,78 each of which sequester BMP li-
gands and prevent them from interacting with BMP 
receptors. Transforming growth factor β also induces 
the expression of the membrane-bound BMP antago-
nist TMEFF1.54 In addition, several reports raise the 
possibility that BMP and activin ligands compete with 
one another for receptors.68,79,80 The mechanisms regu-
lating this competition are unclear at present, but a 
2015 study by Lowery et al79 suggests that this compe-
tition occurs at a greater degree when the BMP- 
specific type 2 receptor (BMPR2) is absent, likely 
because, in the absence of BMPR2, BMP ligands must 
use the type 2 receptors ACVR2A and ACVR2B, 
which are the exclusive type 2 receptors for activin 
ligands.1 Pretreatment with one class of ligand has 
been found to decrease the responsiveness to the other, 
and this effect is abolished when ACVR2 levels are 
increased.68,80 This activity suggests that receptor 

	 Some investigators have postulated that, since 
SMAD4 is a transcriptional co-factor that is shared be-
tween both the BMP and activin/TGF-β signaling path-
ways, perhaps competition for SMAD4 use underlies the 
differential responses to these pathways.35,63 This mecha-
nism may be viewed as a “tug of war” for SMAD4 use, 
with the dominant pathway winning. However, others 
have questioned this model by reporting that SMAD4 
levels are not limiting54,68—there is slack in the rope. 
And, antagonism between these pathways can be ob-
served at the level of RA-SMAD activation,35 which is 
both independent and upstream of SMAD4 recruitment; 
in other words, the tug of war game can be influenced 
before anyone gets to the rope in the first place.
	 We do not favor the idea that differential gene ex-
pression or competition for SMAD4 are sufficient ex-
planations on their own for the widespread antagonism 
between these pathways. An additional possibility is 
that the BMP and activin/TGF-β pathways interact by 
decreasing either the strength or persistence of signal 
transduction in the other pathway. In this model, cel-
lular outcome is a result of the ratio between the 2 path-
ways, much like a seesaw resting on a fulcrum: one 
pathway may increase at the expense of the other 
pathway. Pharmacologic inhibition of the activin/
TGF-β pathway has been reported to increase BMP 
pathway activity (ie, increased levels of activated 
SMAD1, SMAD5, and SMAD8).22,69 And, co-treatment 
with TGF-β reduces the potency of BMP2 or BMP7,70 
whereas loss of the activin/TGF-β effector SMAD3 in-
creases BMP responsiveness.28 Conversely, loss of the 
BMP receptor ALK3 potentiates activin/TGF-β sig-
naling.71 To us, these studies indicate that under certain 
circumstances, there is tonic repression of activated 
BMP effector levels by activin/TGF-β signaling, and 
vice versa. This mechanism would be expected to op-
erate upstream of and influence both of the aforemen-
tioned mechanisms. In other words, whichever pathway 
is heavier on the seesaw could win the tug of war and 
control the light switch.
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